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ABSTRACT

We consider demixing a pair of sparse signals in orthonormal
basis via convex optimization. Theoretically, we characterize
the condition under which the solution of the convex opti-
mization problem correctly demixes the true signal compo-
nents. In specific, we introduce the local subspace coherence
to characterize how a basis vector is coherent with a signal
subspace, and show that the convex optimization approach
succeeds if the subspaces of the true signal components avoid
high local subspace coherence. Furthermore, we illustrate via
examples that our condition for exact demixing is more fun-
damental than existing conditions. We then verify our theo-
retical finding through numerical experiments.

Index Terms— signal demixing, convex optimization,
sparsity, local subspace coherence.

1. INTRODUCTION

Consider an observation model where we observe a signal
z0 ∈ Rn that is a mixture of two indivisual components
x0,y0 ∈ Rn, i.e.,

z0 := x0 + y0. (1)

Usually, the pair of components (x0,y0) correspond to sig-
nals with different types of features, and an important prob-
lem is to demix the individual components (x0,y0) from the
observation z0. Many practical applications such as image
feature decomposition [1, 2, 3], image denoising [4] and sig-
nal separation [5, 6, 7, 8] can be captured by this model. Of
course, directly demixing the signal components based on
eq. (1) is an ill-posed problem, since one can find infinitely
many feasible decomposition pairs. Thus, we need to further
exploit certain structure of the signal components to identify
a unique and correct decomposition, and a useful one is the
sparsity structure.

In this paper, we exploit the sparsity structure of the sig-
nal components in orthonormal basis, and demix them from
the observation model in eq. (1) by solving a convex opti-
mization problem. To be specific, consider a pair of orthonor-
mal basis Ψ,Φ ∈ Rn×n with basis vectors denoted as Ψ :=
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[ψ>1 ; ...;ψ>n ] and Φ := [φ>1 ; ...;φ>n ], respectively. We as-
sume that the signal components x0,y0 have sparse represen-
tations in basis Ψ and Φ, respectively, i.e., Ψx0 and Φy0

are sparse. Then for some λ > 0, we aim to demix the sig-
nal components from eq. (1) by solving the following convex
optimization problem

min
x,y∈Rn

‖Ψx‖1 + λ‖Φy‖1, s.t. x + y = z0. (P)

The form of the convex optimization problem in (P) exploits
the fact that both signal components are sparse in their cor-
responding orthonormal basis. Thus, we seek for the feasible
decomposition with minimum `1 norm, which is the tightest
convex relaxation of sparsity – the non-convex `0 norm. Our
goal in this paper is to characterize the exactness condition of
(P), under which (x0,y0) is the unique solution pair of (P).

Demixing sparse signals via convex optimization has been
well studied in the literature [9, 8, 7, 10, 11, 12, 13]. In spe-
cific, [8] shows that (P) is exact if the signal components are
sparse enough, and gives an explicit characterization of the
phase transition curve with respect to the sparsity of the sig-
nal components. [9] characterizes the exactness condition of
(P) by introducing the mutual coherence between the pair of
orthonormal basis, i.e.,

(Mutual Coherence) : µ(Ψ,Φ) := max
i,j
|〈ψi,φj〉|.

In a special case where Ψ is the discrete Fourier basis and
Φ is the canonical (discrete time) basis , they show that (P)
is exact with high probability if the total sparsity1 of the sig-
nal components are less than the order O( n

logn ). Moreover,
for general choices of orthonormal basis, the exactness con-
dition of (P) requires the total sparsity be less than the order
O( 1

µ2(Ψ,Φ) log6 n
). A drawback of this result is the mutual

coherence barrier, i.e., it becomes trivial when µ(Ψ,Φ) = 1.
In [7, 10], the exactness condition of (P) is characterized for
Ψ,Φ being tight frames. Specially, they introduce the notion
of cluster coherence, i.e.,

(Cluster Coherence) : µ(ΨΩ,Φ) := max
j

∑
i∈Ω

|〈ψi,φj〉|,

where Ω ∈ [n] is a subset of the index. It is shown that (P) can
demix the signal components in the asymptotic regime (i.e.,

1Number of non-zero coefficients of the orthonormal representation.
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j → n) near perfectly provided that the corresponding clus-
ter coherence vanishes. [11, 12, 13] further consider demix-
ing between a low rank matrix and a sparse corruption ma-
trix. Specially, [13] characterizes the exactness condition of
the robust PCA problem based on the leverage scores of the
underlying low rank matrix. Other notions such as the level
dependent coherence are proposed for compressive sensing
problems [14].

Another closely related topic is finding sparse representa-
tions of signals [15, 16, 9, 17, 18, 19, 20, 21]. There, the fo-
cus is to characterize the conditions under which (P) returns
the unique and sparsest decomposition of z0. The conditions
are based on characterizing the so called uncertainty principle
[22, 9, 16, 18] — a signal cannot be simultaneously sparse in
two incoherent orthonormal basis.

Existing exactness condition of (P) either encounters the
mutual coherence barrier [9], or depends on null space anal-
ysis but can only demix the signal in the asymptotic regime
[7, 10]. Thus, the goal of this paper is to characterize a new
exactness condition of (P), and our contributions are of three
fold: 1) we introduce the notion of local subspace coherence,
which measures the coherence between a basis vector and the
subspace spanned by the signal component; 2) we show that
(P) is exact if the subspace spanned by the signal component
distributes in a way that avoids high local subspace coherence;
3) By considering some examples, we show that our exactness
condition for (P) recovers existing result and overcomes the
mutual coherence barrier.

Throughout the paper, ‖·‖p denotes the Euclidean lp norm
and ‖ · ‖ denotes the spectral norm of an operator.

2. PRELIMINARY

Recall that z0 = x0 + y0, and Ψ,Φ are a pair of orthonor-
mal basis. We denote θx := Ψx0,θy := Φy0 as the rep-
resentations of the signal components in the corresponding
orthonormal basis, and also denote Sx,Sy as the support sets
of the representations, respectively. Then, we can identify the
subspaces spanned by the signal components as

X := span{ψj , j ∈ Sx}, Y := span{φj , j ∈ Sy}. (2)

It follows that x0 ∈ X , and y0 ∈ Y . We also denote PX ,PY
as the projection operators onto the corresponding subspaces,
respectively. Our exactness condition is characterized in a
probabilistic way, and we adopt the following random model
on the signal components.

Assumption 1. The signal components x0,y0 satisfy:

1. The support set Sx is fixed. The support set Sy follows
a Bernoulli model, i.e., for all j ∈ [n],P(j ∈ Sy) ∼
Bernoulli(pj).

2. The signs of the non-zeros of θx,θy are distributed in-
dependently from their locations, and take values from
{+1,−1} with equal probability.

The random support model in Assumption 1.1 has been
adopted in [9] for developing a probabilistic argument. We
note that [9] assumes that both of the support sets are uni-
formly picked at random, while we assume a “fixed + ran-
dom Bernoulli” model. Hence, our goal is to characterize
the exactness of (P) under the relationship between subspace
X and the distribution {pj}j of subspace Y . Moreover, the
randomness of the signs in Assumption 1.2 is introduced for
convenience of the proof, and can be eliminated via a de-
randomization argument [12].

To characterize the relationship between subspace X and
the distribution {pj}j of subspace Y , we next introduce the
notion of local subspace coherence — a measure of coherence
between X and the basis vectors {φj}j .

Definition 1. The local subspace coherence between the ba-
sis vectors {φj}j and the subspace X is defined as

µ(X ,φj) := ‖PXφj‖2, ∀j ∈ [n]. (3)

The local subspace coherence has an intuitive explana-
tion: it measures the length of a unit basis vector φj onto
the subspace X . Thus, a higher local subspace coherence im-
plies that the basis vector is more aligned with the subspace
X . Furthermore, this notion of coherence has a fully decom-
posable structure. To be specific, consider arbitrary orthog-
onal decomposition of the subspace X :=

⊕p
l=1 Xl, then it

follows by Definition 1 that

µ2(X ,φj) =
∑p
l=1 µ

2(Xl,φj). (4)

That is, the local subspace coherence is fully decompos-
able with respect to orthogonal decompositions under square
addition. It collects the local subspace coherences with re-
spect to the decomposed subspaces {Xl}l. Also, notice that
dim(X ) = |Sx| corresponds to the sparsity of x0. Hence, the
local subspace coherence preserves the sparsity information
of x0 via the following accumulation rule∑n

j=1 µ
2(X ,φj) = dim(X ) = |Sx|. (5)

Our notion of local subspace coherence is a measure of
coherence between a basis vector and a signal subspace. In
comparison, the notion of mutual coherence [9] seeks for the
maximal coherence among all possible pairs of basis vectors.
Thus, the local subspace coherence can be low even a high
mutual coherence occurs, and we illustrate this point in Exam-
ple 2 later. On the other hand, The cluster coherence [7, 10]
corresponds to the sum of coherences of a cluster of basis vec-
tors, and only helps to characterize the exactness condition in
the asymptotic regime. In summary, our local subspace co-
herence has finer decomposable structures as in eq. (4), and
naturally exploits the sparsity information as in eq. (5). In
the next section, we show the fundamental role that the lo-
cal subspace coherence plays in characterizing the exactness
condition of (P).
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3. MAIN RESULT AND DISCUSSION

With the notion of local subspace coherence, the exactness
condition of (P) is characterized as follows. We outline the
proof due to the page limitations.

Theorem 1. Suppose Assumption 1 hold and set λ = 1
logn in

(P). Then (x0,y0) is the unique minimizer of (P) with proba-
bility at least 1− n−

√
C0 , provided that for all j ∈ [n]

1− pj ≥ C0µ(X ,φj) log2 n, (6)

1− pj ≥ 1
n3 , (7)

where C0 is a universal positive constant.

Outline of the proof. The proof is to show exactness of (P)
via a convex duality argument. Specifically, (P) is shown to
be exact if there exists a dual vector ν ∈ Y⊥ that satisfies the
following set of conditions

‖PX − PXRY⊥PX ‖ ≤ 1
2 (8)

‖PX (γx − λγy + ν)‖2 ≤ λ
n (9)

‖ΨSc
x
(ν − λγy)‖∞ ≤ 1

4 (10)

‖Φν‖∞ ≤ λ
4 , (11)

where RY⊥ is a weighted sampling operator satisfying ERY⊥ =
PY⊥ , γx = Ψ>sgn(θx),γy = Φ>sgn(θy), and ΨSc

x
is ma-

trix Ψ restricted on the rows with the indexes in Scx. The
dual vector ν is then constructed via the iterative “golfing
scheme” in [23]. Lastly, by exploiting the conditions in
eqs. (6) and (7) and introducing the weighted infinity norm
in [24], ν is shown to satisfy the above set of conditions with
high probability.

The condition in eq. (7) is just to avoid singularity in the
proof. Hence, the exactness condition of (P) is mainly char-
acterized by eq. (6), which essentially requires that

P(φj /∈ Y) ∝ µ(X ,φj).

That is, if the basis vector φj has a high local subspace co-
herence with subspace X , then the subspace Y should better
not be spanned by this basis vector. Intuitively, this condition
avoids the signal subspaces X ,Y to be highly coherent with
each other. Otherwise, it is difficult to distinguish between the
signal subspaces, and hence fails to demix the signal com-
ponents. In summary, eq. (6) characterizes the distribution
of the subspace Y that avoids high coherence with subspace
X , and this is a general exactness condition that is applica-
ble to all pairs of orthonormal basis. We note that the choice
λ = 1

logn is just to ease the proof details, and one can adopt
other choices (such as λ = 1) in practical applications.

Next, we consider several specific examples to further
understand the role that the local subspace coherence plays in
the exactness condition. Also, we characterize the total spar-
sity of the signal components allowed under eq. (6), and show

its advantage by comparing with other state-of-art results.
Throughout, we consider the orthonormal basis: F , I,H,
which correspond to the discrete Fourier basis, canonical
basis and bivariate Haar wavelet basis, respectively.

Example 1. Ψ = F ,Φ = I.

This example has been discussed in literature [9, 8, 16],
where one aims at demixing sparse Fourier signal and sparse
discrete-time signal from their mixture. A well known fact of
the F-I basis pair is the maximal incoherence property, i.e.,

∀i, j ∈ [n], |〈ψi,φj〉| =
1√
n
. (12)

Thus, by calculation we obtain that µ(X ,φj) ≡
√
|Sx|
n . In

this case, eq. (6) suggests that the distribution {pj}j of Sy be
uniform, coinciding with existing result [9]. Then, taking the
sum of eq. (6) over all j ∈ [n] and noticing that

∑
j pj =

E|Sy|, we further obtain that

E|Sy|+ C0

√
n|Sx| log2 n ≤ n. (13)

Hence, our exactness condition of (P) for Example 1 allows
E|Sy| = O(n), and |Sx| = O( n

log4 n
). The allowed total

sparsity is comparable (up to certain logarithm factors) to the
results in [9, Theorem 4.2, Theorem 5.1]. We note that E|Sy|
can be replaced by |Sy| by concentration of Bernoulli random
variables.

Example 2. Ψ = H,Φ = F .

Wavelets are suitable for representing singularities in the
signal, and is a typical choice of basis to provide sparse repre-
sentations of images. This pair of basis share a common basis
vector ( 1√

n
, · · · , 1√

n
), and hence the mutual coherence is as

high as µ(H,F) = 1. Consequently, the exactness condition
in [9, Theorem 5.1] allows a total sparsity of the trivial order
O( 1

log6 n
).

However, the coherence between the basis vectors van-
ishes geometrically fast in the asymptotic regime, and the mu-
tual coherence does not exploit this asymptotic incoherence
property. To characterize the coherence pattern specifically,
we assume, without of loss of generality, that n = 2p for
some positive integer p. Then, we partition the index set [n]
into p + 1 dyadic levels, i.e., L0 = {1}, L1 = {2}, L2 =
{3, 4}, · · · , Lp = {n2 + 1, · · · , n}. For any j ∈ [n] we
also define k(j) as the dyadic level that j belongs to, i.e.,
j ∈ Lk(j). Then, the following pattern of coherence follows
from [25, Lemma D.1]

∀i, j ∈ [n], |〈ψi,φj〉| ≤ 2−
k(j)+|k(j)−k(i)|

2 . (14)

The coherence pattern in eq. (14) implies that the Fourier
basis vectors and the wavelet basis vectors are asymptotically
incoherent (i.e., for large k(i), k(j)). Moreover, it helps to
control the local subspace coherence by the sparsity of the
signal component as follows.
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Theorem 2. Consider the coherence pattern in eq. (14). Then
for the subspace X with dim(X ) = |Sx|, we have∑n

j=1 µ(X ,φj) ≤ 2
√

2√
2−1
|Sx|. (15)

Consequently, by summing over all j ∈ [n], the exactness
condition in eq. (6) for Example 2 implies that

E|Sy|+ |Sx| ≤ O( n
log2 n

). (16)

That is, the asymptotic incoherence pattern together with
our exactness condition, allows a total sparsity on a near op-
timal order (up to certain logarithm factor) for Example 2.
Hence, our exactness condition overcomes the mutual coher-
ence barrier in [9, Theorem 5.1] via the local subspace co-
herence, which allows to exploit the pattern of coherence as
in eq. (14). Thus, the local subspace coherence plays a more
fundamental role in characterizing the exactness condition of
(P) than the mutual coherence.

Example 3. Ψ = Φ.

In this extreme example, the basis are exactly aligned, i.e.,

∀i, j ∈ [n], |〈ψi,φj〉| = I{i = j}, (17)

where I{·} is the binary indicator function. Consequently, for
C0 log2 n ≥ 1, the exactness condition in eq. (6) requires that
φj /∈ Y whenever φj ∈ X . This is to ensure that X ∩Y = ∅,
since otherwise it is impossible to demix signals at a common
coordinate in the same basis.

The three examples above imply that the local subspace
coherence plays a more fundamental role in characterizing the
exactness condition of (P). We note that the discussion is not
limited to the examples presented here. In general, one need
to identify the coherence pattern of the pair of basis, and uti-
lize that to further characterize the local subspace coherence.

4. EXPERIMENTS

In this section, we verify our theoretical finding via numeri-
cal experiment. Specifically, we randomly generate x0,y0 ∈
R512 with their sparsity |Sx|, |Sy| ranging from 0%− 60% of
the dimensionality. The support of θx is generated uniformly
at random, while the support of θy is generated according to
the exactness condition in eq. (6). We then solve (P) with λ =
1 for the solution (x̂, ŷ) via the popular ADMM algorithm
[26]. The details of the settings are summarized in Algo-
rithm 1. All experiments are repeated 50 times, and we claim
a success if the average of the relative error ‖x̂−x0‖2+‖ŷ−y0‖2

‖x0‖2+‖y0‖2
is less than 0.01.

We consider Example 2 with Ψ = H,Φ = F . For this
example, we compare two distributions of Sy: the uniform
distribution required by the mutual coherence in [9] and the
distribution adapted to the local subspace coherence in eq. (6).
Figure 1 shows the success region with respect to the sparsity

Algorithm 1 Experiment setup
1). Specify a pair of orthonormal basis Ψ,Φ.
2). Generate the support of θx uniformly at random with
cardinality |Sx|; Evaluate the local subspace coherence
{µ(X ,φj)}j , and normalize {1 − pj}j in eq. (6) to a proba-
bility distribution; Generate the support of θy according to

P(j /∈ Sy) = 1− pj

with cardinality |Sy| (After each sample j we set 1− pj = 0
and renormalize {1− pj}j .).
3). Generate the magnitudes of θx,θy from normal distribu-
tion, and set x0 = Ψ>θx,y0 = Ψ>θy .
4). Solve (P) with λ = 1 via ADMM for the solution (x̂, ŷ).
5). Claim a success if ‖x̂−x0‖2+‖ŷ−y0‖2

‖x0‖2+‖y0‖2 < 0.01.
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Fig. 1. Comparison of success region between (a) Sy be uni-
formly at random and (b) Sy be adapted to local subspace
coherence.

for different distributions of Sy . Clearly from Figure 1.(a),
(P) fails to demix the signal components for a major sparsity
region when Sy is generated uniformly at random. This is be-
cause the highly coherent basis vectors inH andF likely span
the signal subspaces under the uniform distribution, and lead
to a high local subspace coherence. On the other hand, if Sy
is generated according to our exactness condition, high local
subspace coherence is avoided and hence (P) succeeds for a
much wider sparsity region as shown in Figure 1.(b). Hence,
the simulation confirmed that avoiding high local subspace
coherence is the key factor that makes (P) exact.

5. CONCLUSION

In this paper, we consider the problem of demixing a pair of
sparse signals via a convex optimization approach. We intro-
duce the notion of local subspace coherence to characterize
how a basis vector is coherent with a subspace. It turns out
that convex demixing succeeds as long as the signal subspaces
are distributed in a way that avoids high local subspace co-
herence. We hope that this exactness condition can provide a
criterion for designing new models for demixing signals.
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