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ABSTRACT

Time-frequency (T-F) masking algorithms are focused at
separating multiple sound sources from binaural reverberant
speech mixtures. The statistical modelling of binaural cues
i.e. interaural phase difference (IPD) and interaural level dif-
ference (ILD) is a significant aspect of such algorithms. In
this paper, a Gaussian-Student’s t distribution combined mix-
ture model is exploited for robust binaural speech separation.
The weights of the distribution components are calculated
adaptively with the energy of the speech mixtures. The ex-
pectation maximization (EM) algorithm is applied to calcu-
late the parameters of the distributions. The speech signals
from the TIMIT database are convolved with the real binau-
ral room impulse responses (BRIRs) from two datasets for
the evaluation of the proposed method. The objective perfor-
mance measure signal to distortion ratio (SDR) confirms the
improvement and robustness of the proposed method.

Index Terms— Source separation, Gaussian-Student’s t
combined mixture model, adaptive weights, real binaural room
impulse responses

1. INTRODUCTION

The blind source separation (BSS) problem has drawn much
attention from researchers during the past few decades and
a robust solution for convolutive BSS (CBSS) for moving
sources and the underdetermined case is still required [1] [2]
[3] [4]. The well known statistical signal processing methods
such as ICA [1] and IVA [5] are valid only for the exactly-
determined (number of sources is equal to the number of sen-
sors) and over-determined (number of sources is less than the
number of sensors) cases [6]. We humans have the ability to
separate up to six sources with only two ears i.e. solve the
under-determined (number of sources greater than the num-
ber of sensors) case.

For machine learning, the T-F based methods are intro-
duced under the framework of computational auditory scene
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analysis (CASA) e.g. the model-based expectation maximiza-
tion source separation and localization (MESSL) algorithm
[7] to mimic human auditory perception. The MESSL algo-
rithm is based on the assumption of W-disjoint orthogonal-
ity [8], which implies that in the spectrogram, at most one
source is active at each T-F point. On the basis of this result,
non-linear modelling techniques such as those used to form T-
F masks can be used to separate speech mixtures. In MESSL,
the binaural cues are modelled by the Gaussian distribution
mixture model (GMM). The EM algorithm can be used to
determine the model parameters for the best fitting regions.
Then, the probabilistic T-F masks for each of the sources are
generated to separate the mixtures. However, within mixture
distributions, the tails of the distributions also containsignif-
icant information [9]. In our previous work, the Student’s
t-distribution has been exploited to replace the Gaussian dis-
tribution to model the mixture and obtain more information
from outliers [9]. Hence, the Student’s t-distribution mixture
model (SMM) was used to increase the robustness of separa-
tion performance. In the Student’s t-distribution, the degree
of freedomν can control the tails; whenν goes to infinity,
the distribution tends to be Gaussian [10]. However, once the
mixture distribution is more Gaussian, the performance with
SMM may decrease. Hence, using a single type of statistical
distribution model may not be an accurate model.

In this paper, a combined approach is introduced to model
both the IPD and ILD. The mixture distribution is jointly mod-
elled with the GMM and SMM. The tails of the distribution
are better modelled by the SMM whereas the lower amplitude
information by the GMM. The proposed method is evaluated
with real binaural room impulse responses (BRIRs) [11] [12].
The experimental results confirm the improvement and the ro-
bustness of the proposed approach.

The paper is organized as follows, in Section 2, the MESSL
algorithm with the Student’s t-distribution is described.In
Section 3, the MESSL algorithm with the proposed combined
model and adaptive weights are explained; experimental re-
sults are shown in Section 4. Finally, conclusions are drawn
in Section 5.
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2. MESSL WITH STUDENT’S T-DISTRIBUTION

Assume the speech source iss(t), andl(t) andr(t) are sig-
nals acquired by the left and right microphones, respectively.
According to [7], a noise process is convolutive in the time
domain, therefore, the signals are represented asl(t) = s(t−
τl) ∗ hl(t) ∗ nl(t) andr(t) = s(t− τr) ∗ hr(t) ∗ nr(t), where
hl(t) andhr(t) are the impulse responses of the left and right
channels,n(t) is the noise andτ is the time delay.

Therefore, in the frequency domain, the Fourier transform
of the left and right channels are:

L(ω, t) = |S(ω, t)|e−jωτlF{hl(t)}F{nl(t)} (1)
R(ω, t) = |S(ω, t)|e−jωτrF{hr(t)}F{nr(t)} (2)

The ratio ofL(ω, t) andR(ω, t) is the interaural spectrogram:

L(ω, t)

R(ω, t)
= e−jω(τl−τr)H(ω)N(ω, t) (3)

whereN(ω, t) = Nl(ω, t)/Nr(ω, t) represents the Fourier
transform of the noise andH(ω) = F{hl(t)}/F{hr(t)} is
the ratio of Fourier transforms of the impulse responses [7].

The interaural spectrogram is parametrized by the IPD
φ(ω, t) and ILDα(ω, t) measured in dB. Because of the am-
biguities and phase circularity problem, the IPD of the obser-
vation is defined as the phase residualφ̂(ω, t; τ) [13]:

φ̂(ω, t; τ) = arg(ejφ(ω,t)e−jωτ(ω)) (4)

Both the IPD residual and ILD can be modelled approximately
by Gaussian distributions:

p(φ̂(ω, t) | ΘGp) = N (φ̂(ω, t) | ξ(ω), σ2(ω)) (5)

p(α(ω, t) | ΘGl) = N (α(ω, t) | µ(ω), η2(ω)) (6)

whereΘGp ≡ {ξ(ω), σ2(ω)} andΘGl ≡ {µ(ω), η2(ω)} are
the parameter sets of the Gaussian models of IPD and ILD.
The joint distribution of IPD and ILD is:

p(φ(ω, t), α(ω, t)|ΘG) = p(φ̂(ω, t)|ΘGp) · p(α(ω, t)|ΘGl)
(7)

whereΘG is the entire parameter set for the joint Gaussian
distribution.

By independently modelling IPD and ILD with Student’s
t distributions:

p(φ̂(ω, t)|ΘSp) = St(φ̂(ω, t)|ΘSp)

=
Γ(ν+1

2 )

Γ(ν2 )

(
λp(ω)

πν

) 1
2
(
1 +
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ν

)
−

ν+1

2

(8)
and assuming the same degree of freedomν for the IPD and
ILD:

p(α(ω, t)|ΘSl) = St(α(ω, t)|ΘSl)

=
Γ(ν+1

2 )

Γ(ν2 )

(
λl(ω)

πν

) 1
2
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λl(ω)(α(ω, t)− µ(ω))2
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−
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(9)
whereΘSp ≡ {ξ(ω), λp, ν} andΘSl ≡ {µ(ω), λl, ν} repre-
sent the parameter sets for the Student’s t distribution.

3. MESSL WITH COMBINED MODEL

3.1. MESSL with Combined Model

Since the shape of the distribution of the mixture is not fixed,
we propose a combined probabilistic model of Student’s t dis-
tribution and Gaussian distribution in this paper. Assume the
weight of the SMM isk, wherekǫ[0, 1], is a weighting pa-
rameter to modify the contribution of each distribution in the
combined model. The sum of the weighting parameters is
one. Therefore, the new convex mixed distribution is:

k·St(φ̂(ω, t), α(ω, t)|ΘS)

+(1− k)·N (φ̂(ω, t), α(ω, t)|ΘG) (10)

whereΘS denotes the set of all the parameters in ILD and IPD
in the SMM, and includes the degree of freedomν to control
the shape of the Student’s t-distribution. The weightk is a
variable to find the best fit for the combined model, thereby
better modelling the T-F points. By adapting the value ofk,
the shape of distributions can be changed.

From (10), the likelihood function of the observation with
the combined model is represented as:

k · L(Θ)St + (1− k) · L(Θ)G

= k ·
∑

ω,t

log
∑

i,τ

St(φ̂(ω, t)|ΘSp)St(α(ω, t)|ΘSl)

+(1−k)·
∑

ω,t

log
∑

i,τ

N (φ̂(ω, t)|ΘGp)N (α(ω, t)|ΘGl) (11)

The termsL(Θ)St andL(Θ)G represent the log likelihood
function with SMM and GMM, respectively. Each compo-
nent has independent parameters to be initialized and updated
with the EM algorithm. Once the weights for each component
are calculated, the EM algorithm is applied to estimate the pa-
rameters [14]. In the parameter estimation, after a number of
iterations of the E and M steps, (11) converges. The result-
ing parameters are exploited to compute the responsibilities,
namely the possibility of the active point of sourcei with de-
lay τ . By using the GMM, the responsibilities are determined
as:

νiτ (ω, t) ≡ ψiτ · N (φ̂(ω, t; τ)|ΘGp)

·N (α(ω, t)|ΘGl) (12)

Moreover, by using the SMM, the responsibilities are calcu-
lated as:

κiτ (ω, t) ≡

ψiτ · St(φ̂(ω, t; τ)|ΘSp)·St(α(ω, t)|ΘSl)∑
i,τ ψiτ · St(φ̂(ω, t; τ)|ΘSp)·St(α(ω, t)|ΘSl)

(13)

whereψiτ is the mixing coefficient.
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According to (11), (12) and (13), the probabilistic masks
for each of the sources by marginalizing over delay can be
obtained as:

Mi(ω, t) ≡ k ·
∑

τ

κiτ (ω, t) + (1− k) ·
∑

τ

νiτ (ω, t) (14)

Finally, the above probabilistic T-F masks are applied to
separate the target speech signals from the mixtures. The mo-
tivation being that the mixture can be fully modelled by the
proposed method.

3.2. Adaptive Value of Weight in Combined Model

However, the way to find the appropriate weights for each
T-F component is a challenge. The frequency range of the
observed human speech signals is from 0 to 4kHz and the low
frequency regions will generally contain more energy than the
high frequency regions. If either region contains more energy
in the mixture then the distribution shape will generally have
heavier tails.

To obtain a robust and accurate separation performance,
the whole spectrogram is divided into two components, one
is the low frequency part (0-2kHz) and other is the high fre-
quency part (2-4kHz). In the low frequency part, the weights
for the SMM are generally more than for the GMM.

In order to enhance the robustness in the separation per-
formance, an adaptive process is introduced to determine the
value of the weight according to the mixture energy. In each
component, the weights for the SMM and GMM are assigned
according to the ratio of the low frequency part’s energy to the
total energy. The weight of the SMM for the low frequency
component is calculated:

k =

[∑T

4

ω=1 |X(ω)|2

∑T

2

ω=1 |X(ω)|2

]
6 1 (15)

wherek is the weight coefficient,T is the length of the Fourier
transform andX(ω) is the single frequency bin of the mix-
tures. Hence, the weights for the GMM in each component
are1−k. Thus, (15) gives the relationship between the weight
of the SMM and the energy of the low frequency part. The
value ofk is used to determined the weight coefficients for
the GMM and the SMM in (14) to obtain accurate T-F masks
to separate the target speech source from the mixtures.

4. EXPERIMENTAL RESULTS

In this section, the proposed method with the combined model
is evaluated with two types of real BRIRs [11] [12]. In all
the experiments, speech signals are randomly selected from
whole of the TIMIT database [15] to generate the mixtures.
Every speech signal is approximately 2.5 seconds long to avoid
ending silence. From our previous research, it can be known

that once the sources are physically close to each other, the
separation performance will drop significantly [7]. In the ex-
periments, the target source is directed in the front of the
sensors. To confirm the proposed method is valid for these
challenging cases, the azimuth of the interfering source isse-
lected as15 ◦, 30 ◦ and45 ◦ to set the physical separation as
a variable. In the underdetermined case, the second interferer
is located symmetrically with the same azimuths. The de-
gree of freedomν in the SMM of the combined component
is selected as 4, which is an appropriate choice [16]. In the
combined model, the weighting parameter is adaptive to the
proportion of the energy of the sub spectrogram to total en-
ergy. The initial parameters are IPD and ILD frequency de-
pendent to obtain the best separation performance in MESSL
compared with other complexities [7]. The SDR is exploited
to evaluate the separation performance objectively [17].

4.1. Experiments with real BRIRs from Shinn [11]

In BRIRs from Shinn [11], the binaural impulse responses
are recorded in a real classroom whereRT 60 ≈ 565ms. The
sampling frequency is 8kHz and the room size is9m× 5m×
3.5m .

The separation performance at each azimuth is averaged
over five pairs of mixtures to improve the reliability of results.
The averaged SDR values are shown in Figure 1.

Fig. 1: Separation performance comparison in terms of averaged SDR(dB)
over five different pairs of mixtures at each azimuths angle.

It is evident from Figure 1 that the proposed method im-
proves separation performance particularly for the small az-
imuth. With the increase of azimuth, the original MESSL
method also performs better, but even in that case, the pro-
posed method has shown further performance improvement.

4.2. Experiments with real BRIRs from Hummersone [12]

In real BRIRs from Hummersone [12], there are four rooms
with different reverberant environments named A, B, C and
D. From [12], Room C has a higher direct to reverberant ratio
(DRR). Therefore, we only use Room A, Room B and Room
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D to compare the influence ofRT 60s on separation perfor-
mance. Table 1 illustrates the parameters of these four rooms:

Table 1: Room settings for real BRIRs [12]

Room Size Dimension (m3) RT 60 (s)
A Medium 5.7× 6.6× 2.3 0.32
B Small 4.7× 4.7× 2.7 0.47
C Large 23.5× 18.8× 4.6 0.68
D Medium 8.0× 8.7× 4.3 0.89

In the previous experiments with BRIRs from Shinn, the
RT 60 is fixed as565ms, whereas in these experiments, both
the azimuth andRT 60 are variable. The determined and un-
derdetermined cases are evaluated with four rooms and three
azimuths. The separation performance results shown below
are the averaged value of five pairs of mixtures:

Table 2: Separation performance comparison in terms of averaged SDR(dB)
for determined case with different types of rooms and azimuths.

Azimuth =15 ◦ Room A Room B Room C Room D
MESSL 5.25 5.08 5.99 3.54
Proposed 6.11 5.87 6.68 4.09

Improvement 16.4% 15.6% 11.5% 15.5%

Azimuth =30 ◦ Room A Room B Room C Room D
MESSL 9.37 7.71 9.54 6.08
Proposed 10.61 8.15 10.23 6.45

Improvement 13.2% 5.7% 7.2% 6.1%

Azimuth =45 ◦ Room A Room B Room C Room D
MESSL 10.91 8.09 10.85 7.16
Proposed 11.34 8.69 11.68 7.49

Improvement 4.0% 7.4% 7.6% 4.6%

Table 3: Separation performance comparison in terms of averaged SDR(dB)
for underdetermined case with different types of rooms and azimuths.

Azimuth =15 ◦ Room A Room B Room C Room D
MESSL 0.2 1.97 1.62 0.13
Proposed 0.92 1.97 2.17 0.84

Improvement 360% 0% 34.0% 546.2%

Azimuth =30 ◦ Room A Room B Room C Room D
MESSL 4.82 5.22 5.75 3.69
Proposed 6.10 5.81 6.86 4.22

Improvement 26.6% 11.3% 19.3% 14.4%

Azimuth =45 ◦ Room A Room B Room C Room D
MESSL 7.24 6.32 8.42 5.68
Proposed 7.68 6.75 8.73 5.82

Improvement 6.1% 6.8% 3.7% 2.5%

It can be seen from Tables 2& 3 that the increase of az-
imuth causes larger physical separation between the sources,
which means the proportion of overlapping part in the mix-
ture decreases and the separation performance is improved.

With smaller azimuth case, the mixture distribution has heav-
ier tails which can be better modelled by the combined model
than just exploiting GMM or SMM. The results in Table 2&
3 confirm the separation performance and robustness of the
proposed method are improved. Besides, from comparing the
separation performance of Rooms A, B and D in Tables 2&
3, it is evident that the higherRT 60 causes the mixture to be
more complex, because the duration of the reverberation pro-
cess becomes longer, more reflected signals are acquired in
the mixtures. Hence, the value of SDR is decreased when the
RT 60 of environment is higher.

In the underdetermined case, an extra interfere is added
into mixture. Table 3 shows that the proposed method is
also efficient for solving underdetermined case than origi-
nal MESSL method. However, the overall separation per-
formance of the underdetermined case is less than the deter-
mined case. In the end, the separated speech signals are se-
lected from the orignal MESSL and the proposed method and
a listening test performed. The separated speech signals from
the proposed method contain less noise from the interfering
speech sources and are more clear than those from MESSL.

In the experiments, the proposed method is compared with
the original MESSL method using two real BRIRs [11] [12].
These two BRIRs datasets provide three differentRT 60s and
source location azimuths. The purpose of using BRIRs from
Shinn is to find the relation between the separation perfor-
mance and the position of the interference sources. In the
experiments with [12], the azimuth, the number of interferes
andRT 60s are considered as variables. According to these
experimental results, the proposed method outperforms the
state of the art of the original MESSL algorithm.

5. RELATION TO PRIOR WORK AND
CONCLUSIONS

In the MESSL algorithm, the mixture distribution is modelled
by the GMM and the EM algorithm is used to calculate model
parameters [7] [14]. However, modelling of the information
in high amplitudes was still needed, which may not be accu-
rately modelled by the Gaussian distribution. In this paper,
Student’s t and Gaussian distributions are combined together
to model the mixture distribution. Besides, both GMM and
SMM were assigned different weights in the sub spectrogram
to fully model the mixture distribution. The weight param-
eters of each sub spectrogram are calculated adaptively by
the proportion of the energy of low frequency part to the to-
tal energy. The parameters of the distributions are obtained
after a number of E and M iterations and used to generate
T-F masks to separate mixtures. The original MESSL and
proposed method are evaluated with the TIMIT corpus [15]
and real BRIRs [11] [12]. By comparing with experimental
results from the original MESSL method, the separation per-
formance and robustness of the proposed method are found to
be improved.
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