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ABSTRACT analysis (CASA) e.g. the model-based expectation maximiza
\ . ) tion source separation and localization (MESSL) algorithm
Time-frequency (T-F) masking algorithms are focused aj71 t mimic human auditory perception. The MESSL algo-
separating multiple sound sources from binaural revertiera jynm is pased on the assumption of W-disjoint orthogonal-
;pegch mixtures. Thg statistical modelllqg of b|naurglscueity [8], which implies that in the spectrogram, at most one
i.e. interaural phase difference (IPD) and interaurallléife g4 1ce js active at each T-F point. On the basis of this result
ference (ILD) is a significant aspect of such algorithms. 1, jinear modelling techniques such as those used to form T
this paper, a Gaussian-Student's t distribution combined m £ yaqks can be used to separate speech mixtures. In MESSL,
ture model is exploited for robust binaural speech segTati o pinaural cues are modelled by the Gaussian distribution
The weights of the distribution components are calculated,i i ,re model (GMM). The EM algorithm can be used to
adaptively with the energy of the speech mixtures. The €Xgetermine the model parameters for the best fitting regions.
pectation maximization (EM) algorithm is applied to calcu-then the probabilistic T-F masks for each of the sources are

late the parameters of the distributions. The speech Signahenerated to separate the mixtures. However, within mextur
from the TIMIT database are convolved with the real binaugisginytions, the tails of the distributions also contsignif-

ral room impulse responses (BRIRs) from two datasets o5t information [9]. In our previous work, the Students
the evaluation of the proposed method. The objective perfog_gisiribution has been exploited to replace the Gaussin d
mance measure signal to distortion ratio (SDR) confirms th;p tion to model the mixture and obtain more information
improvement and robustness of the proposed method. from outliers [9]. Hence, the Student’s t-distribution ire

Index Terms— Source separation, Gaussian-Student's model (SMM) was used to increase the robustness of separa-

combined mixture model, adaptive weights, real binaurairo tion performance. In the Student's t-distribution, the réeg
impulse responses of freedomv can control the tails; when goes to infinity,

the distribution tends to be Gaussian [10]. However, onee th
mixture distribution is more Gaussian, the performancé wit
MM may decrease. Hence, using a single type of statistical
d'stribution model may not be an accurate model.

1. INTRODUCTION

The blind source separation (BSS) problem has drawn muc

attention from_researchers du_ring the past few decade_s and 1 this paper, a combined approach is introduced to model
a robust solution for convquFlve BSS (.CBSS) for_ MOVING hsth the IPD and ILD. The mixture distribution is jointly mod
sources and the underdetermined case is still require@]1] [elled with the GMM and SMM. The tails of the distribution

[3]4]. The well known statistical sig.nal processing meiho are better modelled by the SMM whereas the lower amplitude
Zufh as I%A (4 akl)nd I\f/A [5] are valid olntlytfr:)r the ixact][y- information by the GMM. The proposed method is evaluated
etermined (number of sources is equal to the number o S€ljith real binaural room impulse responses (BRIRs) [11][12]

sors) and over-determined (number of sources is less thgn ttfhe experimental results confirm the improvementand the ro-
number of sensors) cases [6]. We humans have the ability 19

. . ) ustness of the proposed approach.
separate up to six sources with only two ears i.e. solve the

der-d ined ber of h h The paper is organized as follows, in Section 2, the MESSL
under-determined (number of sources greater than the nurHfgorithm with the Student’s t-distribution is describebh
ber of sensors) case.

. . . Section 3, the MESSL algorithm with the proposed combined
For machine learning, the T-F baseo! method; are Inr'9,44e| and adaptive weights are explained; experimental re-
duced under the framework of computational auditory SCeNEIts are shown in Section 4. Finally, conclusions are drawn
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2. MESSL WITH STUDENT’S T-DISTRIBUTION 3. MESSL WITH COMBINED MODEL

Assume the speech sourcesig), andi(t) andr(t) are sig- 3.1. MESSL with Combined Model

nals acquired by the left and right microphones, respdgtive

According to [7], a noise process is convolutive in the timeSince the shape of the distribution of the mixture is not fixed
domain, therefore, the signals are representé¢tps- s(t — WePproposea combined probabilistic model of Student's-t dis
1) % hy(t) ny(t) andr(t) = s(t — 7,.) % hy(t) * n,.(t), where trib.ution and Gaussign distribution in th.is paper. A§suhua t
h(t) andh,(t) are the impulse responses of the left and rightveight of the SMM isk, whereke[0, 1], is a weighting pa-

channelsp(t) is the noise and is the time delay. rameter to modify the contribution of each distributionlie t
Therefore, in the frequency domain, the Fourier transfornfombined model. The sum of the weighting parameters is
of the left and right channels are: one. Therefore, the new convex mixed distribution is:
L(w,t) = [S(w,t)le " F{m(t)}F{m(t)} (1) .
R(w,t) = |S(w, t)|e 7™ F{h, ()} F{n.(t)}  (2) k-St(¢p(w, t), a(w, t)|Os)
The ratio ofi(mt)) andR(w, t) is the interaural spectrogram: (1= BN (S, £), alw, 1)]Oc) (10)
W, t —jw(T—Tr H
R © Jm=m) H(w)N (w, t) (3)  whereOg denotes the set of all the parameters in ILD and IPD

. inthe SMM, and includes the degree of freedeto control
where N (w,t) = Ni(w,t)/Nr(w,t) represents the Fourier o shape of the Student's t-distribution. The weighs a
transform of the noise and (w) = F{hi(t)}/F{h-(1)} 1S yariable to find the best it for the combined model, thereby
the ratio of Fourier transforms of the impulse responses [7] petier modelling the T-F points. By adapting the value:of

The interaural spectrogram is parametrized by the IPQy,o shape of distributions can be changed.

¢(w,?) and ILD a(w, t) measured in dB. Because of the am- £, (10), the likelihood function of the observation with
biguities and phase circularity problem, the IPD of the obse o -ombined model is represented as:
vation is defined as the phase residu@l, ¢; 7) [13]:

(E’(Wv t: 7—) — arqu'(f)(w,t)e*jw-r(w)) 4) k- L(@)St + (1 - k) 'L(G)G
Both the IPD residual and ILD can be modelled approximately .
by Gaussian distributions: =k- Z log Z St(¢(w,1)[Osp)St(a(w,t)Os:)
w,t 1,7

p(d(w,t) | Ocp) = N((w,1) | W), 0*w))  (5) A

pla(w,t) | Oc) = N(a(w t) | pw), W) (6)  +(1=k)->_log Dy N((w, )06 N (a(w,1)|Oc1) (11)
whereO¢, = {¢(w), 02(w)} andO¢; = {u(w), n?(w)} are wrooT
the parameter sets of the Gaussian models of IPD and ILDChe terms£(©)s; and £(©)s represent the log likelihood
The joint distribution of IPD and ILD is: function with SMM and GMM, respectively. Each compo-

1), )10¢) = p(d(w, 1)Oc,) - 1) nent has independent parameters to be initialized and egdat
P(9(w,1), a(w,)lOc) = p(@(w, )IOcy) - plalw, t)Oct) with the EM algorithm. Once the weights for each component

whereO¢ is the entire parameter set for the joint Gaussiarfi'€ calculated, the EM algorithm is applied to estimate &e p

distribution. rameters [14]. In the parameter estimation, after a number o
By independently modelling IPD and ILD with Student's iterations of the E and M steps, (11) converges. The result-
t distributions: ing parameters are exploited to compute the responssiliti
" . namely the possibility of the active point of souriceith de-
p(o(w,1)[Osp) = St(d(w,)|Osp) lay 7. By using the GMM, the responsibilities are determined
D) (@) ) () M@, h) &) F -
= Tg) <Z7)T—V> <1 + = » ) Vir(w,t) = Yir - N(¢(w, £, 7)|Ocp)
. N(e(w,1)[Oc1) (12)
and assuming the same degree of freedoior the IPD and
ILD: Moreover, by using the SMM, the responsibilities are calcu-
pla(w,t)|Og) = St(a(w,t)|Og) lated as:
I (e )é(l L A@)ag,t) - M(W))Q)VQH (1) =
) \ v o i SUO(w, 1) Osy) St DIOs) 4
9 o~
i - St(p(w, t;7)|Og,)-St(a(w, t)|O
whereOg, = {£(w), A\p, v} andOg; = {u(w), A, v} repre- i ¥ (@ NOsp)-Stlalw.1)|Os1)
sent the parameter sets for the Student’s t distribution. wherey;, is the mixing coefficient.
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According to (11), (12) and (13), the probabilistic masksthat once the sources are physically close to each other, the
for each of the sources by marginalizing over delay can bseparation performance will drop significantly [7]. In the e
obtained as: periments, the target source is directed in the front of the

sensors. To confirm the proposed method is valid for these
Mi(w,t) = k- Z Kir(w,t) + (1 —k) - 2 vir(w,t) (14)  challenging cases, the azimuth of the interfering soursedis
T T lected asl5°, 30 ° and45 ° to set the physical separation as

Finally, the above probabilistic T-F masks are applied to® variable. In the underdetermined case, the second irgerfe

separate the target speech signals from the mixtures. The m! located symmgtrlcally with the same a_2|muths. The de-
tivation being that the mixture can be fully modelled by theJ'€€ of freedom in t_he .SMM of the c_omblne(_j component
proposed method. is sele_zcted as 4, which is an appropriate ch0|ce [1(_3]. In the

combined model, the weighting parameter is adaptive to the
proportion of the energy of the sub spectrogram to total en-

3.2. Adaptive Value of Weight in Combined Model ergy. The initial parameters are IPD and ILD frequency de-

However, the way to find the appropriate weights for eac}pendent to o_btain the best sepa_lration performanpe in MESSL
T-F component is a challenge. The frequency range of thgompared with other cqmplexmes [7]. The_SD.R is exploited
observed human speech signals is from 0 to 4kHz and the lof €valuate the separation performance objectively [17].
frequency regions will generally contain more energy thnen t
high frequency regions. If either region contains more gyer 4.1, Experiments with real BRIRs from Shinn [11]
in the mixture then the distribution shape will generallyéa
heavier tails. In BRIRs from Shinn [11], the binaural impulse responses
To obtain a robust and accurate separation performancale recorded in a real classroom wh&#60 ~ 565ms. The
the whole spectrogram is divided into two components, onéampling frequency is 8kHz and the room sizésis x 5m x
is the low frequency part (0-2kHz) and other is the high fre-3.5m .
guency part (2-4kHz). In the low frequency part, the weights The separation performance at each azimuth is averaged
for the SMM are generally more than for the GMM. over five pairs of mixtures to improve the reliability of réisu
In order to enhance the robustness in the separation pefhe averaged SDR values are shown in Figure 1.
formance, an adaptive process is introduced to determéne th
value of the weight according to the mixture energy. In eact 7 I origina! MESSL ‘ ‘ g
component, the weights for the SMM and GMM are assignet Il Proposed method
according to the ratio of the low frequency part's energyt t
total energy. The weight of the SMM for the low frequency
component is calculated:

SDR (dB)

. { X @)P

o } <1 (15)
I XW)P

wherek is the weight coefficienf]" is the length of the Fourier

transform andX (w) is the single frequency bin of the mix- 15 30 45

tures. Hence, the weights for the GMM in each componen. _ Azimuth (Degree)

arel—k. Thus (15) gives the relationship between the weighf'g' 1: Separation performance comparison in terms of averaged @BR
) ’ over five different pairs of mixtures at each azimuths angle.

of the SMM and the energy of the low frequency part. The

value ofk is used to determined the weight coefficients for

the GMM and the SMM in (14) to obtain accurate T-F masks It is evident from Figure 1 that the proposed method im-
. proves separation performance particularly for the small a
to separate the target speech source from the mixtures. imuth. With the increase of azimuth, the original MESSL

method also performs better, but even in that case, the pro-
4. EXPERIMENTAL RESULTS posed method has shown further performance improvement.

Inthis section, the proposed method with the combined modgj 5 Experiments with real BRIRs from Hummersone [12]
is evaluated with two types of real BRIRs [11] [12]. In all

the experiments, speech signals are randomly selected froim real BRIRs from Hummersone [12], there are four rooms
whole of the TIMIT database [15] to generate the mixtureswith different reverberant environments named A, B, C and
Every speech signal is approximately 2.5 seconds long tidavd. From [12], Room C has a higher direct to reverberant ratio
ending silence. From our previous research, it can be knowfDRR). Therefore, we only use Room A, Room B and Room
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D to compare the influence @@7T'60s on separation perfor- With smaller azimuth case, the mixture distribution has/hea
mance. Table 1 illustrates the parameters of these fourgspomier tails which can be better modelled by the combined model
than just exploiting GMM or SMM. The results in Tablek2

Table 1: Room settings for real BRIRS [12] 3 confirm the separation performance and robustness of the
Room Size Dimensiom¢®)  RT60 (s) proposed method are improved. Besides, from comparing the
A Medium 5.7 % 6.6 % 2.3 032 separation performance of Rooms A, B and D in Tablds 2
B Small 47X AT X T 0.47 3, itis evident that the highe®T'60 causes the mixture to be
c Large 23.5 x 18.8 x 4.6 0.68 more complex, because the duration of the reverberation pro
D Medium 8.0 X 8.7 x 4.3 0.89 cess becomes longer, more reflected signals are acquired in

the mixtures. Hence, the value of SDR is decreased when the
RT60 of environment is higher.

In the previous experiments with BRIRs from Shinn, the | the underdetermined case, an extra interfere is added
RT60 is fixed asb6bms, whereas in these eXperimentS, bOthinto mixture. Table 3 shows that the proposed method is
the azimuth and?7'60 are variable. The determined and un- a|so efficient for solving underdetermined case than origi-
derdetermined cases are evaluated with four rooms and thrgg| MESSL method. However, the overall separation per-
azimuths. The separation performance results shown belogrmance of the underdetermined case is less than the deter-
are the averaged value of five pairs of mixtures: mined case. In the end, the separated speech signals are se-
lected from the orignal MESSL and the proposed method and
a listening test performed. The separated speech sigoats fr
the proposed method contain less noise from the interfering

Table 2: Separation performance comparison in terms of averaged(8BR
for determined case with different types of rooms and aziswut

AZ'TALQQS_LB R?ZH;A Rc5>c.)£ B R(;c.gg c R?gl D speech sources and are more clear than those from MESSL.
Proposed 611 587 6.68 2.09 In the experiments, the proposed method is compared with
improvement | 16.4% 15.6% 11.5% 15.5% the original MESSL method using two real BRIRs [11] [12].
These two BRIRs datasets provide three diffef@fit0s and
Azimuth =30° | Room A | Room B | Room C ] Room D source location azimuths. The purpose of using BRIRs from
MESSL 9.37 7.71 9.54 6.08 Shinn is to find the relation between the separation perfor-
Proposed 10.61 8.15 10.23 6.45 mance and the position of the interference sources. In the
Improvement | 13.2% 5.7% 7.2% 6.1% experiments with [12], the azimuth, the number of interfere
and RT'60s are considered as variables. According to these
Azimuth =45° | Room A | Room B | Room C | Room D experimental results, the proposed method outperforms the
MESSL 1091 | 8.09 1085 | 7.16 state of the art of the original MESSL algorithm.
Proposed 11.34 8.69 11.68 7.49
Improvement 4.0% 7.4% 7.6% 4.6%

5. RELATION TO PRIOR WORK AND
CONCLUSIONS

Table 3: Separation performance comparison in terms of averaged(8BR

for underdetermined case with different types of rooms amhaths. In the MESSL algorithm, the mixture distribution is modellle
Azimuth=15° | Room A | Room B | Room C | Room D by the GMM and the EM algorithm is used to calculate model
MESSL 0.2 1.97 1.62 0.13 parameters [7] [14]. However, modelling of the information
Proposed 0.92 197 2.17 0.84 in high amplitudes was still needed, which may not be accu-
Improvement | 360% 0% 34.06 | 546.2% rately modelled by the Gaussian distribution. In this paper

Student’s t and Gaussian distributions are combined tegeth
to model the mixture distribution. Besides, both GMM and
SMM were assigned different weights in the sub spectrogram
to fully model the mixture distribution. The weight param-
eters of each sub spectrogram are calculated adaptively by

Azimuth =30° | Room A | RoomB | Room C| Room D
MESSL 4.82 5.22 5.75 3.69
Proposed 6.10 5.81 6.86 4.22

Improvement | 26.6% 11.3% 19.3% 14.%

Azimuth =45° | Room A | Room B | Room C | Room D the proportion of the energy of low frequency part to the to-
MESSL 724 6.32 8.42 5.68 tal energy. The parameters of the distributions are obdiaine
Proposed 7.68 6.75 8.73 5.82 after a number of E and M iterations and used to generate

Improvement 6.1% 6.8% 3.™% 2.5% T-F masks to separate mixtures. The original MESSL and

proposed method are evaluated with the TIMIT corpus [15]
It can be seen from Tables& 3 that the increase of az- @nd real BRIRs [11] [12]. By comparing with experimental

imuth causes larger physical separation between the sgurc&esults from the original MESSL method, the separation per-
which means the proportion of overlapping part in the mix-formance and robustness of the proposed method are found to

ture decreases and the separation performance is improvét§ improved.
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