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ABSTRACT
The Wiener filter is a well-known signal processing

method for improving a noisy signal’s quality. The Wiener
filter requires either knowledge of or estimates of the power
spectra of the signal-of-interest and of the undesired noise,
leading to implementation challenges. In this paper, we
show how a recently-developed second-order signal quantity
termed the panorama can be employed to compute the Wiener
filter for deterministic signals – containing nearly-constant
frequency and phase components – in additive stochastic
noise. We first show how the Wiener filter transfer func-
tion is related to the absolute value of the panorama and the
power spectrum of the noisy measured signal. We then pro-
vide a practical procedure for estimating the absolute value
of the panorama across frequency for single-channel sam-
pled recordings. Numerical examples show the ability of
the proposed procedure for estimating the panorama and for
computing the Wiener filter for noisy deterministic signals.

Index Terms— autocorrelation, convolution, frequency
estimation, spectral analysis, Wiener filtering.

1. INTRODUCTION

Noise reduction is at the heart of many applications involv-
ing recorded sensor signals. In such applications, perhaps the
most well-known approach for reducing noise is the Wiener
filter, which tries to maximize the signal-to-noise ratio (SNR)
at the output of the filter. Consider the continuous-time signal

x(t) = s(t) + η(t), (1)

where s(t) is an unknown signal of interest and η(t) is an
additive noise signal. Then, a classic form of the Wiener filter
is defined in the frequency domain as

H(ω) =
Rss(ω)

Rss(ω) +Rηη(ω)
=

Rss(ω)

Rxx(ω)
, (2)

where Rss(ω) and Rnn(ω) are the power spectra of the sig-
nal of interest and the additive noise signal, respectively, and
Rxx(ω) = Rss(ω) + Rηη(ω). Implementation of the lin-
ear filter specified by (2) can employ either time-domain or

frequency-domain processing to the measured signal x(t) and
is usually performed using discrete-time processing. Such a
solution assumes that both s(t) and η(t) have well-defined
power spectra over some time period of interest.

The primary challenge in the implementation of the
Wiener filter is the estimation of two distinct power spectra
from a single signal x(t). Various methods can be employed
to extract information about either s(t) or η(t) within x(t),
including activity detection for intermittent signals, sparsity
across some signal basis, statistical relationships between
signal components in time or frequency, and the like [1]–[8].
The key issue is tailoring knowledge about signal properties
to the estimation of the signal spectra.

Recently, two novel mathematical tools for relating the
second-order statistical properties of mixtures of determinis-
tic and stochastic finite-power signals have been introduced
[9]. The autoconvolution is a time-domain quantity com-
puted from x(t) that maintains the phase information of the
deterministic components within x(t), while the panorama
is the Fourier transform of the autoconvolution. Using the
panorama, it has been shown that deterministic sinusoidal
components can be detected in correlated stochastic noise
without knowledge of the sinusoidal frequencies or ampli-
tudes, even when the stochastic noise has peaks in its power
spectrum. The main challenge so far in using the autocon-
volution and panorama in practical scenarios is stated in [9]:
Simple time averages cannot be used in place of ensemble
averages to compute the autoconvolution and/or panorama.
Thus, one of the most-common estimation tools cannot be
easily applied. In addition, a rigorous connection between the
panorama and the Wiener filter in (2) is an open issue.

In this paper, we describe a strategy for constructing
a Wiener filter for enhancing a deterministic signal s(t)
observed through a signal x(t) containing additive stochas-
tic noise η(t) using concepts originally developed for the
panorama. The method relies only on the nearly-constant
nature of the amplitudes and phases of the frequency compo-
nents of the signal-of-interest, and no other information about
the deterministic signal is used. To this end, we first relate
the power spectrum and panorama of x(t) to (2), indicating
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that the phase information contained within the panorama is
not required. We then describe a technique for estimating the
absolute value of the panorama of a single-channel signal in
the discrete-time domain. Block processing is used, in which
time-domain averages of processed versions of the discrete
Fourier transform are employed to estimate Rss(ω), after
which the Wiener filter solution is constructed. Applications
of the technique on both synthetic data and on noisy speech
signals indicate the usefulness of the approach.

2. WIENER FILTER AND THE PANORAMA

As first described in [9], the autoconvolution pxx(t) of a time-
domain signal x(t) containing both deterministic and stochas-
tic components is defined as

pxx(t) = lim
T→∞

1

2T

∫ T

−T
E{x(τ)x(t− τ)}dτ, (3)

where E{·} denotes statistical expectation. The autoconvolu-
tion is different from the autocorrelation rxx(t), defined as

rxx(t) = lim
T→∞

1

2T

∫ T

−T
E{x(τ)x(t+ τ)}dτ, (4)

due to the appearance of the minus sign on the integral ar-
gument τ in (3). The panorama Pxx(ω) as a function of fre-
quency ω is defined in [9] as the Fourier transform of pxx(t):

Pxx(ω) =

∫ ∞
−∞

pxx(t)e
−jωtdt. (5)

The relationship between the panorama of x(t) and the
power spectrum of s(t), denoted as

Rss(ω) =

∫ ∞
−∞

rss(t)e
−jωtdt, (6)

where rss(t) is the autocorrelation of the deterministic sig-
nal s(t), is key to understanding the utility of the panorama
for enhancing deterministic signals in stochastic noise. First,
consider a signal s(t) of the form

s(t) =

N∑
n=1

An cos(ωnt+ φn). (7)

It is easy to show via Fourier transforms of Eqs. (5) and (6)
of [9] that the power spectrum and panorama of s(t) are

Rss(ω)=

N∑
n=1

A2
n

4
[δ(ω−ωn) + δ(ω+ωn)] (8)

Pss(ω)=

N∑
n=1

A2
n

4

[
δ(ω−ωn)ej2φn + δ(ω+ωn)e

−j2φn
]
.(9)

Thus, we see for deterministic signals that

Rss(ω) = |Pss(ω)|. (10)

The panorama of a deterministic signal can be used to con-
struct its power spectrum using the absolute value operator.

Now, consider the general case in which x(t) = s(t) +
η(t) contains both deterministic and stochastic components.
Then, due to the fact that the autoconvolution of a wide-sense
stationary stochastic signal is zero [9], we have the result that

Pss(ω) = Pxx(ω). (11)

Combining (11) with (10), we obtain

Rss(ω) = |Pxx(ω)| (12)

when x(t) contains stochastic noise.
The usefulness of the result in (12) for constructing the

Wiener filter solution in (2) is readily seen. If the absolute
value |Pxx(ω)| of the panorama of x(t) can be estimated, we
can express (2) as

H(ω) =
|Pxx(ω)|
Rxx(ω)

, (13)

which depends only on quantities related to the measured sig-
nal x(t). This result is important, as joint amplitude-and-
phase estimation of a signal’s frequency components is in
practice a more challenging task than amplitude estimation
alone. Thus, estimation of |Pxx(ω)| should be easier than es-
timation of Pxx(ω).

The main difficulty in using the filter solution in (13) is the
challenge in estimating the absolute value of the panorama of
a signal x(t) from a single recording as opposed to ensemble
averages from multiple recordings, as indicated in [9]. In the
next section, we describe a strategy for this estimation task.

3. PRACTICAL ESTIMATION PROCECURE

Our proposed strategy for estimating |Pxx(ωi)| is a novel
modification of the well-known spectral estimation technique
of periodogram averaging [10]. To introduce the modifica-
tion, consider first the problem of estimating the ordinary
power spectrum Rxx(ωi) at frequency ωi from fast Fourier
transform (FFT) bin values Xk(ωi), computed across differ-
ent block indices k. For both deterministic signals and for
wide-sense stationary signals, a viable strategy is simply to
use time-averaging across blocks, such that

R̂xx(ωi) =
∑
k

αk|Xk(ωi)|2, (14)

where {αk} are real-valued non-negative weights that sum
to unity across some range of k values. Depending on how
the weights are chosen, this method could be used for signals
whose characteristics change with or are constant over time.

While it might seem reasonable to use a similar technique
for estimating the panorama Pxx(ωi) by weighted-time aver-
ages of [X(ωi)]

2, the difficulty with such a method is the lack
of time synchronization between the blocks used to form the
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Fig. 1. Block diagram of a general estimation procedure for
|Pxx(ωi)| and Rxx(ωi).

averages. For estimating the Wiener filter function, however,
only an estimate of the absolute value |Pxx(ωi)| is needed.
Moreover, for deterministic signals, the relations in (11)–(12)
tell us that appropriate weighted time averages of |Xk(ωi)|2
can be used if we can account for the varying bin-value phases
across the data blocks. We can leverage the constant time ex-
tent of the data blocks to account for this phase variation.

The proposed joint strategy for estimating both Rxx(ωi)
and |Pxx(ωi)| is shown in Figure 1. In this diagram, the FFTs
of three successive data blocks at times (k+1), k, and (k−1),
respectively, are used, thus introducing a single block time
delay. The phases 6 X·(ωi) of the ith bin values from each
of these blocks are used to compute a compensation angle for
the ith bin value at block k as

θk(ωi) = 2 6 Xk(ωi)− 6 Xk+1(ωi)− 6 Xk−1(ωi),(15)

Then, the estimate of the absolute value of the panorama for
the ith bin is computed as

|P̂xx(ωi)| =

∣∣∣∣∣∑
k

αk|Xk(ωi)|2 cos(θk(ωi))

∣∣∣∣∣ , (16)

where the same weighting sequence {αk} for computing
R̂xx(ωi) in (14) is used. For any one frequency bin dominated
by deterministic components at or near its center frequency
ωi, it is easily seen that θk(ωi) will be small in amplitude, and
thus cos(θk(ωi)) ≈ 1 in such frequency bins. For frequency
bins dominated by stochastic components, the average value
of cos(θk(ωi)) will vary such that the block time averaging
used in (16) will lead to small amplitudes for the panorama
estimates in such frequency bins. The use of the factor of 2
and the cos function itself is motivated by the facts that (a)
Pxx(ωi) is related to the square of X(ωi) for deterministic
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Fig. 2. Numerical estimates of Rxx(ωk) and |Pxx(ω)| using
(a) the ensemble-averaging technique described in [9] over
100 different realizations and (b) the time-averaging tech-
nique described in this paper over a single realization with
the same number of total data points.

signals and (b) e2jδθ = cos(2δθ) + j sin(2δθ) ≈ cos(2δθ)
for small δθ when the imaginary part is negligible.

Remark #1: The approach used to compute the compen-
sation angle θk(ωi) employs successive blocks that ide-
ally are statistically-independent of each other, so that both
6 Xk+1(ωi) and 6 Xk−1(ωi) within θk(ωi) are uncorrelated
with |Xk(ωi)|2 in (16). While such a condition cannot be
guaranteed, it is desirable to choose non-overlapping blocks
to minimize any effects of such signal correlation. The effects
of this signal correlation are currently under investigation.

Remark #2: The joint strategy described above does not ad-
dress the tradeoff between frequency resolution of the FFT
and the statistical variability of the estimates across frequency
bins. It is useful to employ some form of frequency smooth-
ing or, equivalently, an inverse FFT/windowing/FFT process-
ing sequence to the power spectrum and panorama estimates
to address these issues. Numerical examples in the next sec-
tion employ the latter processing steps.

4. NUMERICAL EVALUATIONS

The ability of the proposed methods to estimate the panorama
and the Wiener filter is illustrated via numerical evaluations.

We first explore the ability of the approach illustrated in
the last section to accurately estimate |Pxx(ωi)| via simula-
tions. The example chosen in this first case is similar to that
described in [9], in which

x(n) = cos(2π0.15n− π/6) + 0.25 cos(2π0.25n+ π/3)

+0.1 cos(2π0.4n+ π/8) + η(n), (17)

where η(n) is a zero-mean Gaussian random process gener-
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Fig. 3. Spectrograms of (a) original noiseless speech signal,
(b) noisy speech signal, (c) Wiener filtered output signal esti-
mated using both signals, and (d) Wiener filtered output esti-
mated using only the noisy speech signal via the panorama.

ated by filtering a zero-mean uncorrelated Gaussian random
process with a digital filter whose system function is

H(z) =
1

1− 1.6 cos(2π0.2)z−1 + 0.64z−2
(18)

We generated two data sets of this signal: (a) 100 different
1000-sample realizations in which the phase of the determin-
istic signal in x(n) is identical across each realization and
(b) a single 100000-sample realization. The approach for es-
timating the power spectrum and panorama employing en-
semble averages of the autocorrelation and the autoconvo-
lution as described in [9] followed by FFT with a window
size of N = 256 and a Hamming window was used on the
first data set. Figure 2(a) shows the power spectrum and the
absolute value of the panorama produced by this technique.
We then employed the method illustrated in Figure 1 to esti-
mate the power spectrum and panorama from the second data
set, with identical window sizes and windowing choices. Fig-
ure 2(b) shows the power spectrum and the absolute value of
the panorama produced by the proposed method with con-
stant αk values. Comparing (a) with (b), we find that the
two |Pxx(ωi)| estimates are quite similar to each other across
all frequencies, both in overall level and in frequency resolu-
tion. This result illustrates that we have achieved the desired
goal of the accurate estimation of (the absolute value of) the
panorama using time-averaging, such that the ensemble aver-
aging limitation stated in [9] has been removed.

We now illustrate the ability of the method illustrated in
Figure 1 to estimate the Wiener filter function for a semi-
deterministic signal in stochastic noise. Figure 3(a) shows the
spectrogram of an eight-second recording of the first author
singing an “ah” vowel sound with a fundamental frequency
of about 220 Hz, sampled at 16kHz. Figure 3(b) shows the

0 1000 2000 3000 4000 5000 6000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency [Hz]

G
ai

n 
[d

B
]

 

 
Ideal
Using Panorama

Fig. 4. Wiener filter functions for the ideal and panorama-
based estimates in the speech enhancement example.

spectrogram of a noisy version of this eight-second recording,
in which the filter in (18) has been used to generate random
Gaussian noise that is played out of a loudspeaker in the same
room, and this signal is then added to the first signal, simu-
lating the effect of simultaneous recording. The average SNR
of the noisy signal was 10 dB. The signals in Figures 3(a) and
(b) are used to estimate Rss(ωi) and Rxx(ωi) for a standard
Wiener filter and are then applied to the signal in Figure 3(b),
resulting in the “ground truth” spectrogram in Figure 3(c), in
which N = 256-sample data blocks and Bartlett window-
ing are used. Finally, the signal in Figure 3(b) alone is used
to estimate both |Pxx(ωi)| and Rxx(ωi) using the method de-
scribed in this paper, from which the Wiener filter is estimated
and applied to the signal. Figure 3(d) shows the correspond-
ing spectrogram. Comparing Figures 3(c) and (d), we see that
they are quite similar, indicating that the proposed method is
capable of estimating a Wiener filter function in this situa-
tion. The proposed Wiener filtering method achieved an aver-
age SNR of 15.2 dB, which is close to the 15.6 dB achieved
by the optimal Wiener filter of identical structure. The two
estimated Wiener filter functions are shown in Figure 4 and
are found to be extremely similar. Both filters capture the
general characteristics of the harmonics of the quasi-periodic
signal and have nearly-identical frequency rolloffs. This re-
sult shows that our proposed Wiener filtering technique em-
ploying the panorama can be estimated from a single-channel
recording without activity detection, noise identification, or
training data.

5. CONCLUSIONS

In this paper, we have described a procedure for estimating a
Wiener filter function for an unknown deterministic signal in
unknown additive stochastic noise. The recently-developed
second-order quantity of a signal, called the panorama, is em-
ployed to construct the Wiener filter function from a single
realization of the signal. A practical estimation procedure is
given, and numerical evaluations shows the usefulness of the
technique for both spectral estimation and noise suppression.
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