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ABSTRACT

Partial Least Squares (PLS) has been gaining popularity as a multi-
variate data analysis tool due to its ability to cater for noisy, collinear
and incomplete data-sets. However, most PLS solutions are designed
as block-based algorithms, rendering them unsuitable for environ-
ments with streaming data and non-stationary statistics. To this end,
we propose an online version of the nonlinear iterative PLS (NI-
PALS) algorithm, based on a recursive computation of covariance
matrices and gradient-based techniques to compute eigenvectors of
the relevant matrices. Simulations over synthetic data show that the
regression coefficients from the proposed online PLS algorithm con-
verge to those of its block-based counterparts.

Index Terms— Latent variables, NIPALS, regression, Rayleigh
quotient, online learning.

1. INTRODUCTION

Partial Least Squares (PLS) regression is a data analysis tool used
to find relationships between blocks of multivariate data. The key
attribute of PLS is its ability to deal with collinear and noisy data, an
ill-posed problem for traditional ordinary least squares (OLS) solu-
tions [1]. Importantly, unlike standard regression algorithms for co-
linear data, such as principal component regression (PCR), the PLS
does not require the user to choose principal components in the data
before finding the relationships between the independent and depen-
dent variables. These benefits have led to successful applications
of PLS in many areas such as chemometrics, social sciences and
bioinformatics [2], however, the PLS is still rather unexplored in the
signal processing community.

The main drawback of conventional PLS algorithms is that their
block-based nature requires simultaneous processing of all the avail-
able observations. This grossly limits the use of PLS in applications
involving streaming data with non-stationary statistics. In addition,
block-based methods tend to be computationally prohibitive for large
scale problems, where gradient-based and online estimators are be-
coming standard [3].

Although finding a unified solution to the online PLS algorithm
is still an open problem, several efforts in this direction have been
made. These include, a recursive solution based on a sliding-window
type technique [4], incremental solutions specifically designed for
dimensionality reduction [5] or solutions limited to univariate data
[6]. None of these methods have exploited ideas from stochastic
gradient-based learning which has been shown to routinely outper-
form other methods in large scale settings [3, 7].

To this end, we propose an online PLS algorithm which is ca-
pable of finding a common subspace for multivariate data which are
collected in an online fashion. The proposed online PLS algorithm
employs well-known ideas, such as recursive computation of empir-
ical cross-covariance matrices and stochastic gradient maximisation

of the Rayleigh quotients, to estimate the scores and loading factors
of the data matrices. The proposed result has similarities with online
manifold learning methods [8].

The rest of this paper is organised as follows. In Section 2, a
background of the PLS solution is provided and its extension to an
online format is derived in Section 3. Simulation over synthetic data
for an online prediction setting is included in Section 4 to verify the
performance for the proposed algorithm.

2. BACKGROUND

Consider a multivariate regression problem of predicting dependent
variables (output), Y ∈ RN×p, from independent variables (input),
X ∈ RN×m, where N denotes the number of observations of the
p−dimensional dependent variables and m−dimensional indepen-
dent variables. The linear model for this regression problem is given
by

Y = XB (1)

where B ∈ Rm×p is the matrix of regression coefficients. The ordi-
nary least squares solution to (1) is given by

B̂LS = X+
LSY (2)

and is performed through calculating the matrix pseudoinverse de-
fined as X+

LS = (XTX)−1XT. Crucially, this requires the matrix
XTX to be invertible, so that for colinear independent variables in
X , the least squares solution in (2) is ill-posed due to the singularity
of the of the matrix XTX .

The partial least squares (PLS) method was introduced by Wold
[9] to solve this class of problems. Several methodologies to com-
pute a block-based PLS solution exist, and without loss in generality,
we consider the classical nonlinear iterative PLS (NIPALS) algo-
rithm owing to its widespread use and simplicity [1] .

The principle of PLS is to jointly decompose the input matrix,
X , and the output matrix, Y , into the matrices which contain only
the mutually relevant components [9]. This is achieved through cou-
pled decompositions in the form

X = TP T Y = TCT (3)

where T ∈ RN×r is an orthogonal matrix common to both X
and Y , and is referred to as the matrix of “scores”. The matrices
P ∈ Rm×r and C ∈ Rp×r are the so-called “loadings” of the in-
dividual input and output matrices,1 while r refers to the rank of the
input matrix and is upper bounded as r ≤ m. Notice that the PLS

1In the full NIPALS solution, Y is also decomposed in terms of another
matrix U which are the equivalent scores in the column space of Y , but are
ommited here for brevity as they are not required for calculations.
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decomposition in (3), constrains X and Y to lie in the same column
space spanned by the score matrix, T , and in that sense it estab-
lishes an input-output relationship between X and Y which can be
exploited for prediction.

The decomposition in (3) is accomplished through an iterative
computation of the columns of the matrices in T , P and C. This
is achieved by first calculating a component, w ∈ Rm×1, that max-
imises the empirical cross-covariance between the X and Y blocks
defined as

S1
def
= XT

1 Y1 (4)

where the subscript “1” in S1 is used to indicate that the PLS is
an iterative procedure in which subsequent covariance matrices are
calculated using “deflated” versions of the original data matrices,
with the intial values X1 ←X and Y1 ← Y .

The first principal vector, w1 ← w, is found as the solution to
the following optimisation problem

w1 = argmax
‖w‖=1

wTS1S
T
1w (5)

and is given by the maximum eigenvector of the sample cross-
covariance matrix (in the same iteration) post-multiplied by its
transpose, that is

w1 = Eigmax{S1S
T
1 } (6)

where the Eigmax{·} operator extracts the maximum eigenvector of
the matrix in its argument [2]. The so obtained w1 is then used to
produce the first column of the score matrix, T , in (3), in the form

t1 = X1w1 (7)

To compute the loading matrices, C and P , it is convenient to ex-
press the PLS decomposition in (3) as a sum of rank-1 matrices, pro-
duced through outer products of the columns of the matrix of scores,
T , and the corresponding columns of the loading matrices, C and
P , that is

X =

r∑
d=1

tdp
T
d , Y =

r∑
d=1

tdc
T
d (8)

Recall that equation (7) produces only the first score, t1, so that the
initial rank-1 approximation of (8) is given by

X ≈ t1p
T
1 , Y ≈ t1c

T
1 (9)

where the vectors p1 and c1 from (9) are respectively the first
columns of the loading matrices P and C in (3) which are yet to be
found. Notice that (9) represents nothing else than a variant of the
standard least squares problem in (1) – (2), from which the solutions
for p1 and c1 can be found by projecting X1 and Y1 on to the score
t1 in (7), to give

p1 =
XT

1 t1
tT1 t1

, c1 =
Y T

1 t1
tT1 t1

(10)

Finally, the remaining columns of T , C and P are found by remov-
ing the impact of the score t1 from the original data X and Y to
produce the “deflated” matrices

X2 ←X − t1p
T
1 , Y2 ← Y − t1c

T
1 (11)

The process in (4) – (11) is repeated r times to find all wd, td,pd, cd,

for d = 1, . . . , r, starting from the deflated covariance matrix, Sd =
XT

dYd in (4). The eigenvector matrix, W , score matrix, T , and
loading matrices, P and C, then become

W = [w1, . . . ,wr] , T = [t1, . . . , tr] ,

P = [p1, . . . ,pr] , C = [c1, . . . , cr] .
(12)

The eigenvectors, wd, of the iteration wise matrix SdS
T
d , d =

1, 2, . . . , r, are obtained from the NIPALS given in Algorithm 1,
and span the subspace of X which is relevant to the regression with
Y . Hence, they provide a low-rank PLS decomposition of the input
matrix X in the form

X̃ = T (P TW )W T (13)

The regression coefficients, B, are now calculated as

B̂PLS = X̃+Y (14)

where, owing to its structure, X̃+ is straightforwardly calculated as

X̃+ = W (P TW )−1T T (15)

Algorithm 1 The NIPALS Algorithm

1: Initialise: X1 ←X , Y1 ← Y ,
2: for d = 1, . . . , r do
3: Sd = XT

dYd

4: wd = Eigmax{SdS
T
d }

5: td = Xdwd

6: cd = Y T
d td/t

T
dtd

7: pd = XT
d td/t

T
dtd

8: Xd+1 = Xd − tdp
T
d , Yd+1 = Yd − tdc

T
d

9: end for
10: Create matrices W , T , P and C from (12)
11: Find BPLS from (14).

3. AN ONLINE PARTIAL LEAST SQUARES

The NIPALS algorithm outlined in Algorithm 1 requires block data
inputs, X ∈ RN×m and Y ∈ RN×p, where N refers to the number
of observations. However, in many practical scenarios all the obser-
vations, N , cannot be obtained simultaneously but are observed as
streaming values, that is, at every time instant, n, only one row of X
and Y is observed.

Therefore, the key difference between the NIPALS formulation
in (4) – (11) and the proposed online-NIPALS (OL-PLS) is that in
the online setting, at each time instant n, we only have access to the
n-th row of the matrices X and Y , denoted by xn ∈ R1×m and
yn ∈ R1×p, given as

xn
def
= X(n,1:m), yn

def
= Y(n,1:p) (16)

The OL-PLS algorithm is next developed through recursive solutions
to the steps in (4) – (11). To this end, the empirical cross-covariance
matrix in (4) is first expressed as a sum of rank-1 matrices xT

nyn, for
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n = 1, . . . , N , to give

S1,N =

N∑
n=1

xT
nyn (17)

where the subscript N in S1,N indicates the number of observations
used to compute the sample cross-covariance matrix in (17). Then,
(17) can be computed recursively as

S1,n = S1,n−1 + xT
nyn (18)

and the same procedure can also be used for the deflated cross-
covariance matrices, to give

Sd,n = Sd,n−1 + xT
d,nyd,n, d = 1, . . . , r (19)

where xd,n and yd,n denote the deflated data vectors which consti-
tute the deflated data matrices in (11). A forgetting factor, 0� λ <
1, can be introduced in (18) and (19) to account for non-stationary
data statistics, which yields

Sd,n = λSd,n−1 + (1− λ)xT
d,nyd,n (20)

The recursion in (20) provides a reliable estimate owing to the inher-
ent averaging of the cross-covariance, which reduces the impact of
outliers.

To explain the principle of OL-PLS, recall that the block-based
PLS solution in steps (4) – (11) uses the empirical cross-covariance
matrix, S1, to identify a basis to describe a subspace in X that ex-
hibits co-variation with Y . This basis is used to produce the corre-
sponding latent variables, which are the columns of the score matrix
T , these in turn provide a robust prediction of the output Y from
the input X . The most important step for an online PLS algorithm
is to produce an estimate of the eigenvectors wd,n, d = 1, 2, . . . , r,
at each time instant n. With an increase in n, these estimates should
converge to a set of vectors equivalent to the NIPALS solution that
describe the same joint subspace. Upon calculating the eigenvector,
wd,n, the remaining variables can be straightforwardly computed in
an online fashion.

The online PLS is now fully equipped to produce estimates of
the covariance matrix Sd,n, which is then used to produce the eigen-
vectors wd,n, at each time instant, n, and for every deflation itera-
tion, d = 1, 2, . . . , r. The estimation of wd,n from (6), when per-
formed in an online setting, can therefore be considered as a prob-
lem of adaptively estimating the largest eigenvectors of the matrix
Sd,nS

T
d,n.

3.1. Adaptive Estimation of the OL-PLS Variables

Consider the Rayleigh quotient, which for a matrix and vector pair
(A,w) is defined as [10]

R(A,w)
def
=

wTAw

wTw
(21)

The vector w that maximises (21) represents the maximum eigen-
vector of the matrix A. Therefore, the estimation of the maximum
eigenvector, wd,n, of the matrix Sd,nS

T
d,n in (6) can be accom-

plished using the maximisation of the Rayleigh quotient in (21)
for the matrix-vector pair (Sd,nS

T
d,n,w) along with the constraint

‖w‖ = 1. This yields the cost function

Jw
def
=

1

2
R(Sd,nS

T
d,n,w)

s.t.‖w‖=1

=
wTSd,nS

T
d,nw

2wTw
+ β(1−wTw)

(22)

where β is a Lagrange multiplier. The Rayleigh cost function in (22)
can be maximised recursively, using gradient ascent methodology
[11], in the form

wd,n+1 = wd,n + µ
∂Jw

∂w

∣∣∣∣
w=wd,n

(23)

where µ is a step-size which controls the trade-off between conver-
gence speed, stability and steady state error. The gradient ∂Jw/∂w
is calculated as

∂Jw

∂w
= −

(
‖ST

d,nw‖2

‖w‖2 I − Sd,nS
T
d,n

)
w

‖w‖2 − βw

The role of the Lagrange optimisation is to keep ‖w‖ = 1 and to en-
sure the uniqueness of the vector that maximises the Rayleigh quo-
tient. It can be shown that the Lagrange multiplier, β, is in the form

β =
wTSd,nS

T
d,nw

wTw
(1− 1

‖w‖ )

The OL-PLS algorithm follows the direction of this gradient, esti-
mated from the available variables at the time instant n, to give the
OL-PLS update

wd,n+1 = wd,n − µβwd,n+ (24)

µ

(
‖ST

d,nwd,n‖2

‖wd,n‖2
I − Sd,nS

T
d,n

)
wd,n

‖wd,n‖2

Remark 1. The analysis in [11] shows that the gradient ascent step in
(24) converges to the largest eigenvector of SdS

T
d . This implies that

if the estimate of Sd,n converges to the cross-covariance matrices
Sd obtained by NIPALS in (4) as n→∞, then the online estimate,
wd,n will also converge to the eigenvectors, wd in (6).

Upon estimating the eigenvectors, wd,n, the scores td,n from (7)
are computed as

td,n = xd,nwd,n (25)

The next step is to find the corresponding loading vectors, pd and
cd, necessary for the deflation. Note that the computation in the
block-based NIPALS algorithm in (10) gives the loading vectors

pd,n =
xd,n

td,n
, cd,n =

yd,n

td,n
(26)

However, the deflation of the input and output data using the load-
ings in (26) will yield a null-vector at each time instant. This is
obvious from the deflation step in (11), modified for the online case,
where

xd+1,n = xd,n − td,npT
d,n = xd,n − td,n

xd,n

td,n
= 0

and is a consequence of the fact the available data at each time instant
are rank-1. Our solution to this issue is through an online estimation
of optimal loading vectors, these are found via gradient descent min-
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imisation of the following cost functions

Jp = ‖xd,n − td,npT‖2, Jc = ‖yd,n − td,ncT‖2 (27)

for which the gradients are given by

∂Jp

∂p
= − 2td,n

(
xT

d,n − td,np
)

∂Jc

∂c
= − 2td,n

(
xT

d,n − td,nc
)

The online estimates for the loading vectors now take the form

pd,n+1 = pd,n + µtd,n
(
xT

d,n − td,npd,n

)
(28)

cd,n+1 = cd,n + µtd,n
(
xT

d,n − td,ncd,n
)

(29)

which are standard least mean square adaptive filters. This solution
is equivalent to the block NIPALS algorithm which produces rank-
1 least squares estimates of X and Y , denoted by X̂ = tpT and
Ŷ = tcT, for each score on each iteration. Recall that tpT and
tcT are then removed from the data blocks X and Y . To this end,
the instantaneous score, td,n, within OL-PLS is used to deflate each
xd,n and yd,n through the estimates x̂d,n = td,np

T
d,n and ŷd,n =

td,nc
T
d,n, with the full deflation scheme given by

xd+1,n = xd,n − td,npT
d,n (30)

yd+1,n = yd,n − td,ncTd,n

In other words, the OL-PLS performs an adaptive estimation of pd,n

and cd,n in order to converge to the least squares solution.
As a result, the proposed online extension of PLS adaptively

estimates wd,n, pd,n and cd,n from the inputs xn and yn, which
provides the instantaneous estimates of the PLS components td,n.
To this end, the matrices Sd,n are updated recursively based on the
deflated inputs xd,n and yd,n, which are also estimated adaptively
as shown in (30).

The OL-PLS algorithm summarised in Algorithm 2, where the
tuning parameters are µ and λ.

Algorithm 2 Proposed online PLS (OL-PLS)

1: Inputs at time instant n: xn ∈ R1×m and yn ∈ R1×p

2: Initialise: Sd,1 ← xT
1y1

3: Initialise: pd,1, qd,1 and cd,1 ← 0
4: Initialise: wd,1 ← first column of Sd,1

5: for d = 1, . . . , r do
6: Sd,n = λSd,n + (1− λ)xT

d,nyd,n

7: wd,n+1 = wd,n + µ
∂JSd,n

∂wT
d,n

, using (24)

8: td,n = xd,nwd,n

9: pd,n+1 = pd,n + µtd,n
(
xT

d,n − td,npd,n

)
10: cd,n+1 = cd,n + µtd,n

(
xT

d,n − td,ncd,n
)

11: xd+1,n = xd,n − td,npT
d,n, yd+1,n = yd − td,ncTd,n

12: end for

4. SIMULATIONS AND ANALYSIS

Simulations on synthetic data were conducted to verify the perfor-
mance of the proposed OL-PLS algorithm. A particular emphasis
was on the accuracy of OL-PLS in an online prediction setting. To
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Fig. 1: OL-PLS error in predicting Y

this end, we generated M = 10 realisations of a low-rank input in-
put matrix, X ∈ RN×5, with rank r = 3, drawn from a unit variance
Gaussian distribution. This input matrix was multiplied by a vector
b ∈ R5×1 to produce a univariate output y = Xb. The OL-PLS
algorithm in Algorithm 2 was then used to estimate the output y at
each time instant. The performance measure was the empirical mean
square error (MSE) computed as

MSEn =
1

M

M∑
`=1

|y(`)
n − ŷ(`)

n |2

where ŷ
(`)
n denotes the `-th realisation of the OL-PLS output esti-

mate at time n. Figure 1 (top panel) shows the ensemble average
prediction MSE, calculated as a percentage of the total variance in
y, for λ = 0.9999 and µ = 0.0001. For successful performance,
the OL-PLS solution should be equivalent to that of the NIPALS al-
gorithm, that is, the OL-PLS vectors wd,n should converge to those
produced by NIPALS, wd, as n→∞. To verify this, Figure 1 (bot-
tom panel) shows the ensemble average of the MSE of each vector
wd,n (as a percentage of its total variance) and the corresponding
vector calculated by NIPALS.

5. CONCLUSION

We have introduced an Online PLS (OL-PLS) algorithm as an exten-
sion of the popular NIPALS method for PLS-regression. It has been
shown that a recursive estimation of the empirical cross-covariance
matrices, Sd, provides a suitable instantaneous estimate from which
the eigenvectors of SdS

T
d can be adaptively calculated through gra-

dient ascent of the Rayleigh quotient. This makes it possible for the
online version of PLS to adaptively calculate the scores, while the
corresponding loadings are estimated through a stochastic gradient
descent scheme. We have validated the proposed OL-PLS through
illustrative simulations which confirm an accurate, online, estimate
of the output Y and the NIPALS vectors wd. The convergence anal-
ysis and simulations over a larger number of case studies are the
subject of ongoing work.
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