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ABSTRACT

A class of discrete-time random processes that have seen a wide va-
riety of applications consists of a linear state-space model whose
parameters are modulated by the state of a finite-state Markov chain.
A typical way to filter such processes is with collapsing methods,
which approximate the underlying distribution by a mixture of Gaus-
sians indexed by the recent history of the Markov chain. The compu-
tational cost of such methods increases rapidly as the error decreases
to zero. This paper presents an alternative approach to filtering these
processes based on keeping track of the values of the underlying
probability density function and characteristic function on grids. It
has favourable convergence properties under certain assumptions.

Index Terms— Filtering, Markov switching.

1. INTRODUCTION

This paper looks at a general class of probabilistic models described
as follows. Let N denote the non-negative integers. Let S(k), k ∈ N,
be a Markov chain on a finite set S of states having transition matrix
M : S × S → R. Let X : N → Rd and Y : N → Rn be discrete-
time random processes satisfying the equations

X(k) = AS(k)X(k − 1) +BS(k)U(k) + Cproc
S(k)Zproc(k), k ≥ 1

Y (k) = FS(k)X(k) +GS(k)U(k) + Cobs
S(k)Zobs(k), k ≥ 0

(1)

where Zproc(k) ∈ Rc, Zobs(k) ∈ Rm are all iid N(0, I), U(k) ∈
Rb forms a weakly exogenous process (e.g., U(k) is deterministic)
and, for each s, As is a d × d matrix, Bs is a d × b matrix, Cproc

s

is a d× c matrix, Fs is an n× d matrix, Gs is an n× b matrix and
Cobs
s is an n×m matrix. For our work, additional assumptions are

placed on the parameters of the model; these assumptions are listed
in Section 2.

Equation (1) does not describe the distributions of the initial val-
ues S(0) and X(0); one option is to choose an arbitrary distribution
for S(0) and an arbitrary nondegenerate Gaussian for X(0). An-
other option, available under certain conditions on the parameters, is
to assume that the model is in steady state; this is what we do in the
examples later in the paper. (In our examples, U is constant.)

Model (1) is a Hidden Markov Model [1], in which (S(k), X(k))
is the hidden part of the state and Y (k) is the observation. This
model unifies several notions of linear models modulated by a
Markov chain. The filtering problem for (1) is to describe the prob-
ability distribution of (S(k), X(k)) conditional on observations of
Y (0), · · · , Y (k).

Model (1) includes vanilla finite Markov chains and vanilla lin-
ear state space equations as degenerate cases. There do exist more
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sophisticated special cases of Equation (1) that still have exactly
computable filters. These include the regime-switching models in
econometrics of [3, 5], which were pointed out in [4] to be special
cases of (1). In many cases of (1), however, exact methods are un-
likely to be found, so suboptimal filters, i.e., numerical approxima-
tions, become useful.

A timeline of the suboptimal filtering methods for this model
and special cases is given in [2, Section 13.3.5]. A common theme of
many filters is collapsing: approximate the (conditional) distribution
of X(k) by a mixture of Gaussians, indexed by the recent history
of S(k). The prediction step increases the number of terms in the
mixture by a factor of the number of states. To prevent an explosion
in the number of terms, the histories are truncated to a fixed depth at
each step of the filter, merging the Gaussians together. A collapsing
method for Equation (1) in its full generality was described in [8,
Section 3.1] in an engineering context (building on older results for
special cases), and in [4] in econometrics (also building on older
results, and only for a depth of 1). As the depth increases, collapsing
methods converge to the true filtered density, but the computational
cost is exponential in the depth.
Statement of contribution The present paper presents a numerical
method for filtering for a large class of the models given by Equa-
tion (1). We represent the filtered density by a tuple (G, G̃, h, h̃)
where G and G̃ are grids of points in Rd, h : S×G → R is a discreti-
sation of the probability density function (PDF), and h̃ : S×G̃ → R
is a discretisation of the characteristic function (CF). The advantage
of our approach is that the errors in likelihood computations con-
verge to 0 faster than collapsing methods as the allowed computation
time increases. In a quite different way, [6] has previously shown the
usefulness of considering the CF in a suboptimal filter.

Section 2 describes the class of problems we consider. In Sec-
tion 3 we describe our method and demonstrate it by efficiently com-
puting the log-likelihood of a sequence of observations. We compare
our method with a collapsing method from the literature. In Sec-
tion 4 we discuss the advantages and disadvantages of our approach
and the outlook.

2. ASSUMPTIONS

The assumptions we place on the parameters of Model (1) are de-
signed so that the filtered distribution of X(k) does not spread out
too much over time (A1); the filtered distribution of X(k) stays ab-
solutely continuous (A2); the filtered characteristic function ofX(k)
does not spread out too much over time (A3); and the distribution of
X(0) is well localised in space as well as frequency (A4). The de-
tails of these implications will appear elsewhere.

A1 For every s ∈ S, for all x ∈ Rd, ‖Asx‖ < ‖x‖.

A2 Cobs
s is an invertible square matrix;
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A3 There is a positive integer η such that for any sequence
s1, · · · , sη of states of the Markov chain, the matrix(

Cproc
sη AsηC

proc
sη−1

· · · , Asη · · ·As2Cproc
s1

)
(2)

has rank equal to the number of rows.

A4 the distribution of X(0) is absolutely continuous and there
is α > 0 such that for every s ∈ S the PDF fX(0)|S(0)=s
satisfies

fX(0)|S(0)=s(x) = O(exp(−α‖x‖2)) as ‖x‖ → ∞

and the CF f̃X(0)|S(0)=s satisfies

f̃X(0)|S(0)=s(x̃) = O(exp(−α‖x̃‖2)) as ‖x̃‖ → ∞.

3. NUMERICAL METHOD

Throughout this section we write fW for the PDF of a random vari-
able W , and f̃W for the CF. We use the common shorthand fW |`
for the PDF of W conditional on the observations up to time `, that
is, fW |Y (0)=y0,··· ,Y (`)=y` . We use a similar shorthand f̃W |` for the
conditional characteristic function.

3.1. Description of the method

Our method is based on the observation that, under Assump-
tions A1–A4, the PDF fX(k)|S(k)=s,` of X(k) conditional on

S(k) = s, Y (0) = y0, · · · , Y (`) = y`

(where ` is k−1 or k) is well localised in space as well as frequency.
To be precise, there is α1 such that for all k ≥ 0,

fX(k)|S(k)=s,`(x) = O(exp(−α1‖x‖2) as ‖x‖ → ∞

and

f̃X(k)|S(k)=s,`(x̃) = O(exp(−α1‖x̃‖2) as ‖x̃‖ → ∞.

Proofs will be published elsewhere.
The Poisson Summation Formula then implies that the PDF can

be accurately described by its values on a finite grid, and that its
(continuous) Fourier transform can be well approximated by a dis-
cretised version. This fact can be interpreted in terms of the Sam-
pling Theorem: If a PDF is approximately band-limited then it can
be approximately reconstructed from its samples on an infinite grid;
if it is also approximately compactly supported then it can be ap-
proximately reconstructed from the values on a finite grid.

Under the assumptions described in Sections 1–2 the filtered dis-
tribution can be described by a function fk|` : S ×Rd → R defined
as follows:

fk|`(s, x) :=P (S(k) = s|Y (0) = y0, · · · , Y (`) = y`) ×
fX(k)|S(k)=s,Y (0)=y0,··· ,Y (`)=y`(x) (3)

We can also define a corresponding “characteristic function” f̃k|` :

S × Rd → C:

f̃k|`(s, x) :=P (S(k) = s|Y (0) = y0, · · · , Y (`) = y`) ×

E
(
exp(iX(k)Tx̃)|S(k) = s,

Y (0) = y0, · · · , Y (`) = y`
)
. (4)

The (continuous) Fourier transform maps between fk|`(s, x) and
f̃k|`(s, x). We now describe idealised versions of the update and
predict steps in terms of these functions.

Updating takes fk|k−1(s, x) and an observation yk and produces
fk|k(s, x). Using the nature of an HMM,

fk|k(s, x) =
fS(k),X(k),Y (k)|k−1(s, x, yk)

fY (k)|k−1(yk)
. (5)

where

fS(k),X(k),Y (k)|k−1(s, x, y)

= fk|k−1(s, x)fY (k)|S(k)=s,X(k)=x(y), (6)

fY (k)|k−1(y) =
∑
s∈S

∫
Rd
fS(k),X(k),Y (k)|k−1(s, x, y)dx, (7)

and using Equation (1),

fY (k)|S(k)=s,X(k)=x(y) =

1

det(Cobs
s )

g
(
(Cobs

s )−1 (y −Asx−GsU(k))
)
. (8)

where g is the PDF of a standard multivariate normal random vari-
able.

The prediction step takes fk−1|k−1 and produces fk|k−1. It can
be easily described in the Fourier domain:

f̃k|k−1(s, x̃) =

(∑
s1

Ms1,sf̃k−1|k−1(s,A
T
s x̃)

)
·

exp
(
ix̃TBsU(k)

)
g̃
(
Cproc
s

Tx̃
)
, (9)

where g̃ is the characteristic function of a standard multivariate nor-
mal random variable.

We now describe how fk|` and f̃k|` are discretised and how
Equations (5), (6), (7), (9) can be computed from these discretisa-
tions. Let x0 ∈ Rd and let e1, · · · , ed denote the standard basis
vectors of Rd. Let q1, · · · , qd be positive integers, ρ1, · · · , ρd be
positive real numbers and let

G =
{
x0 + r1ρ1e1 + r2ρ2e2 + · · ·+ rdρded :

rp ∈ {1, · · · , qp} for p = 1, · · · , d
}
. (10)

Let V =
∏d
p=1 ρp. Let

G̃ =
{(

r1 −
q1 + 1

2

)
2π

q1ρ1
e1 + · · ·+

(
rd −

qd + 1

2

)
2π

q1ρ1
ed :

rp ∈ {1, · · · , qp} for p = 1, · · · , d
}
.

(11)

Let Ṽ =
∏d
p=1

2π
qjρp

. Now fk|`(s, x) can be approximated by a dis-

cretisation hk|` : S×G → R and f̃k|`(s, x) can be approximated by
a corresponding discretisation h̃k|` : S×G̃ → R. We can convert be-
tween discretisations h̃k|` and hk|` by replacing the continuous (In-
verse) Fourier Transform with a Discrete Fourier Transform, scaled
by Ṽ (or V ). These transformations are straightforward approxima-
tions of the Riemann integrals for the (Inverse) Fourier Transform.
But they turn out to be very accurate in our situation, because the
functions f̃k|` and fk|` are well localised. Specifically, if the grid is
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such that αj is proportional to q−1/2
j , then there is α2 > 0 such that

the total error in approximating the Fourier transform in dimension
j is then O(exp(−α2qj)) as qj →∞.

Approximation of the integral of Equation (7) is similarly accu-
rate. Equations (5), (6) and (9) are just componentwise calculations,
except for the slightly tricky expression

f̃k−1|k−1(s,A
T
s x) (12)

in Equation (9). This expression requires resampling f̃k|k. To this
end, at the end of the preceding update step we have access to an
approximation of fk|k, so evaluating Equation (12) is simply a mat-
ter of computing the Fourier transform on a different grid; i.e., AsG̃
instead of G̃. Thus, while a Fast Fourier Transform can be used to
convert between approximations of f and f̃ , we now have to use a
more expensive technique to compute Equation (12) on a grid. In
our 1-dimensional examples we use the Chirp Z-transform [7].

We now summarise the steps of the filter.
Update step. Given h̃k|k−1 we can compute hk|k−1 by performing a
Fast Fourier Transform. Given an observation yk, for (s, x) ∈ S×G,
compute

hS(k),X(k),Y (k)|k−1(·, ·, yk) : S × G → R
(s, x) 7→ fY (k)|S(k)=s,X(k)=x(yk)hk|k−1(s, x)

(13)

where fY (k)|S(k)=s,X(k)=x(y) is computed as in Equation (8). The
values of hS(k),X(k),Y (k)|k−1 give a discretisation of

fS(k),X(k),Y (k)|k−1(s, x, y).

Approximate the integral of fS(k),X(k),Y (k)|k−1 by summing
the components of hS(k),X(k),Y (k)|k−1(·, ·, yk) and scaling by V .
This gives the contribution of the observation Y (k) = yk to the
likelihood computation. Finally, hk|k is computed by normalising
(13), i.e., dividing by the integral just computed.
Prediction step. The prediction step computes h̃k|k−1 from
hk−1|k−1. It can be broken down into 3 parts: mixing, conver-
sion to resampled CF and applying shifting and noise.
(Mixing.) Compute the map

h1 : S × G → R

(s, x) 7→
∑
s1

Ms1,shk−1|k−1(s1, x). (14)

This is a discretisation of P (S(k) = s|k − 1)fX(k−1)|k−1(x).
(Conversion to resampled CF.) Let

C̃ =

{(
x̃1 · · · x̃d

)T
: − π

ρp
< x̃p <

π

ρp
for p = 1, · · · , d

}
.

(15)

Compute

h̃1 : S × G̃ → C

(s, x̃) 7→
{
V
∑
x∈G exp(ix

TAT
s x̃)h

∗(s, x) AT
s x̃ ∈ C̃

0 AT
s x̃ /∈ C̃.

(16)

This is a discretisation of P (S(k) = s|k−1)f̃AsX|k−1(x̃). If d = 1
Equation (16) can be efficiently computed with a Chirp Z-transform.
(Applying shift and noise.) Finally we evaluate

h̃k|k−1 : S × G̃ → R

(s, x̃) 7→ h̃1(s, x̃) exp(iBsU(k))g̃(Cproc
S(k)

Tx̃). (17)

Fig. 1. Example simulation of the state-space model described in
Section 3.2. The bold line gives the underlying process, and the
dotted line gives the observations. The thin line gives our algorithm’s
approximation of E(X(k)|k).

Fig. 2. The y-axis shows the computed log-likelihood for a sequence
of observations (generated as described in Section 3.2) based on a
class of collapsing filters described in Section 3.3. The x-axis shows
the depth of the history used to describe each state. The total number
of computations grows proportionally to 2depth.

3.2. Demonstration

We set up an example to show the filter working. (In Section 3.3 we
compare the filter with one from the literature.) Consider Model (1)
with d = n = 1,S = {0, 1} and

M =

(
0.9 0.1
0.5 0.5

)
,

U(k) = 1 for all k,
A0 = A1 = 0.9, B0 = −B1 = 0.1, Cproc

0 = Cproc
1 = 0.02

F0 = 1, F1 = 2, G0 = G1 = 0, Cobs
0 = Cobs

1 = 0.2.

(18)

We assume the model to be initially in steady state. To generate data,
we initially set S to 0 andX to 0, simulated the model for 5000 time
steps and discarded the positions, then simulated the model for a
small number of further time steps and recorded the values ofX and
Y .

For testing and demonstrating our filter, we tried a range of val-
ues for the number of points in the grid. Both G and G̃ were chosen
to be symmetric around the origin; the spacing between the points
of G was 0.1

√
2π/q1 and the spacing between the points of G̃ was

10
√

2π/q1. The initial distribution was chosen by treating S and X
as independent with P (S = 0) = P (S = 1) = 1

2
andX a Gaussian

centred around 0 with standard deviation 0.2. We then computed the
steady state PDF by running for 100 time steps before any observa-
tions.

In Figure 1 we show an example simulation of the model with
parameters given by Equation (18). We also show our filter’s ap-
proximation of E(X(k)|k). For this we used k = 100 grid points.
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Fig. 3. The y-axis shows the computed log-likelihood, using our
method, for the same sequence of observations used in Figure 2.
The x-axis shows the number of points used in the grids for both the
PDF and characteristic function discretisations. The total number
of computations grows slightly worse than linearly in the number
of points. For too few points, the filter does not produce an answer
(because it can run into nonpositive conditional probability densities
for which the logarithm does not exist.)

Fig. 4. A dashed curve shows the steady-state PDF, as computed
with 100 iterations of our prediction step, of a model whose steady
state PDF is exactly the Gaussian shown by the solid curve. We used
20 points in the PDF and CF grids. Also shown (with a second dotted
curve) is the PDF computed with 100 iterations on a grid with 200
points, but it is barely any different from the solid curve at this scale.

3.3. Comparison to a collapsing method for computing likeli-
hood

For comparison we implemented a filter based on the description in
[8, Section 3.1]. We applied the collapsing method to the first 20
samples of the example in Figure 1. Figure 2 shows how the error
in the log-likelihood computed by a collapsing filter decreases as the
depth parameter (mentioned in Section 1) is increased. The error
decreases in an approximately exponential manner as a function of
the depth, but the total number of computations required grows in an
approximately exponential manner as a function of the depth. Thus,
the relationship between computational work and error is a power
law. Figure 3 shows how the error in the log-likelihood computed by
our filter decreases as the number of points in the grids is increased.

3.4. Demonstration of the convergence of the computed steady
state

Iterating the prediction step results in convergence not to the true
steady state of the system but to an approximation of it. Here we take
a look at how good this approximation can be. By using a Markov
chain with only one state, we end up with a system that can be fil-
tered exactly with a Kalman filter. The true steady state can be com-

Fig. 5. Convergence of the error in the steady-state PDF, as the num-
ber of iterations of the update step increases. We use the model
described in Section 3.4. We use our method with 20 grid points
(dashed curve) and 200 grid points (solid grid points), and measure
the maximum error — over all the grid points — between our ap-
proximation and the true (Gaussian) steady state. Note that with 200
grid points, the error reduces to a few machine epsilons in a small
number of iterations.

puted symbolically, which we can use for comparison to our result.
We used the following parameters: A0 = 0.5, B0 = 0, Cproc

0 = 1.
Since we are only concerned with the steady state, the other param-
eters do not matter. We conduct this experiment with the number of
grid points q as either 20 or 200. We set both G and G̃ to be symmet-
ric around 0 with spacing

√
2π/q1. We show the computed steady

state after 100 iterations for these choices of q1 in Figure 4 against a
plot of the symbolically computed steady state.

We next conducted an experiment to get an idea of how the er-
ror depends on the number of iterations used. For 1 through to 40
iterations we compute the steady state using q1 = 20 and q1 = 200
grid points. We then evaluate the error between the approximate
steady state and the true steady state at the grid points and find the
maximum such error. Figure 5 shows the result. For q1 = 20 the
maximum error does not go below around 10−6 regardless of how
many iterations are used. But for q1 = 200 the error swiftly de-
creases until it is comparable to the errors expected from machine
precision.

4. CONCLUSION AND OUTLOOK

Linear state-space models with Markov switching have been found
useful for a variety of problems in engineering and econometrics.
Many filtering methods proposed in the literature are based on the
notion of collapsing. As the depth increases, the filter converges
to the theoretically optimal filter but with rapidly increasing com-
putational cost. In contrast, our method is based on the idea that
the underlying distributions can be approximated with high accu-
racy by recording the values of the PDF and CF on a grid. The error
in these representations decreases asymptotically exponentially with
the number of grid points in each dimension, while the computa-
tional cost does not. As such, for low dimensions, this method has
favourable convergence properties. We have not determined whether
they remain favourable for higher dimensional models. A significant
unanswered question is: for a given allowed number of points, how
should the grid be chosen? A variation on this is that the error in
the approximation depends on the observations themselves, so is it
possible to temporarily upgrade a grid on receipt of an observation
that requires extra attention?

4175



References
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