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ABSTRACT

Expected Likelihood based quality assessment of DOA estimates re-
lies on the underlying signal and noise distributions having likeli-
hood ratio probability density functions for the (unknown) true pa-
rameters that are independent of the actual true DOAs. This has
been shown, both analytically and practically for a wide range of
real and complex Gaussian solutions. Recent studies [1, 2] focusing
on compound Gaussian mixtures have applied Expected Likelihood
based on Monte-Carlo assessment of the “scenario-free” nature of
the LR p.d.f.s. In this paper, through specified moments and the use
of Mellin’s transform, we derive the analytic p.d.f. for the Expected
Likelihood sphericity test in the presence of data with the complex
angular central Gaussian distribution associated with this compound
Gaussian case.

Index Terms— Maximum Likelihood Estimation, Angular
Central Distribution

1. INTRODUCTION

Maximum likelihood (ML) direction of arrival (DOA) estimation of
multiple sources in noise is a difficult problem that very rarely can
provide a globally optimal solution in a computationally reasonable
implementation. Instead , a series of different ML-proxy techniques
are used, and in order to provide a “quality” assessment of those
techniques, particularly in marginal SNR or sample-starved condi-
tions which reside in the threshold regime where various ML-proxy
algorithms have differing performance, we have suggested an “ex-
pected likelihood” (EL) approach [3, 4]. The EL approach is based
on a quite straight-forward idea of comparison of the likelihood ra-
tio (LR) generated by the DOA estimates Θ = [θ̂1, . . . , θ̂p] with the
distribution of LRs generated by the true DOA’s Θ0 = [θ1, . . . , θp].
Naturally the true DOA’s are unknown, but for a number of esti-
mation circumstances, including the conditional and unconditional
Gaussian models, the distribution of likelihood ratios LR(Θ0) as-
sociated with the true DOAs does not depend on the actual DOAs,
but instead is fully specified by the antenna dimension M and the
number of i.i.d. Gaussian training samples T (and in the conditional
model, the number of sources p), all of which can reasonably be
known a priori. Thus the likelihood ratio produced by DOAs esti-
mates can be compared to the range of LR values associated with the
true DOAs and their quality assessed. It was demonstrated in [5–7]
that for Gaussian mixtures, MUSIC-produced sets of DOA estimates
that contain an outlier estimate generate an LR value which falls
below the range of LR values statistically associated with the true
DOAs. In fact, this “expected likelihood” technique has demon-
strated high statistical efficiency in detecting ML-proxy (e.g. MU-

SIC) performance breakdown in threshold conditions where the SNR
or number of snapshots T is insufficient to reliably generate accu-
rate MUSIC DOA estimates, but MLE itself still produces CRB-
consistent DOA estimates. Naturally, this method cannot help in
regimes where MLE itself produces estimates with errors which de-
viate significantly from the CRB (the MLE “threshold” region), but
is valuable in aiding the use of more computationally efficient ML-
proxy algorithms in many circumstances. Since detection-estimation
and DOA estimation in particular, is often performed in noise/clutter
environments that are strongly non-Gaussian [8, 9], it is desirable to
have a similar expected likelihood technique for quality assessment
of the derived DOA estimates. Specifically, in [1], the following data
model was considered:

xt = A(Θ)st +
√
τtηt + σwwt (1)

where Θ = [θ1, . . . , θp] is the vector of the DOAs for p sources
and A(Θ) = [a(θ1), . . . ,a(θp)]

T is the array manifold matrix. In
what follows, we assume a conditional model for which the emit-
ted waveforms st ∈ Cp are treated as deterministic unknowns. ηt
andωt are independent and identically distributed Gaussian vectors:
ηt ∼ CN (0, I) andωt ∼ CN (0, I), σ2

ω stands for the thermal noise
power and τt is a positive random variable.

The problem is that for most distributions of τt, used for
“spikey” sea clutter modelling, for example, the closed form p.d.f.
for the clutter and internal Gaussian noise mixture (

√
τtηt + σωωt)

does not exist. Therefore, all derivations associated with the accurate
maximum likelihood and CRB methodology are not applicable here,
including the methodology which led to the expected likelihood
technique in the Gaussian case. For this reason, in [1], we suggested
an associated expected likelihood ratio test. Indeed, given a set of
DOA estimates Θ̂p and a set of i.i.d. training samples XT per (1),
it is reasonable to assume that DOA estimates Θ̂p which deliver the
minimum

Θ̂ = min
Θ

Tr[P⊥(Θ)XTX
H
T ] (2)

should be close to the optimal solution and (trivially)

min
Θ

Tr[P⊥(Θ)XTX
H
T ] ≤ Tr[P⊥(Θ0)XTX

H
T ] (3)

where the projector matrix P⊥ is defined as

P⊥(Θ) = I −A(Θ)[AH(Θ)A(Θ)]−1AH(Θ) =

= UM−p(Θ)UH
M−p(Θ) (4)

Yet, Tr[P⊥(Θ0)XTX
H
T ] still depends on τt and therefore its distri-

bution is not available a priori. For this reason, in [1], we suggested
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the introduction (in the presence of p sources) of normalized samples

zt =
UM−p(Θ)xt
||UM−p(Θ)xt||

(5)

where
UH
M−p(Θ)UM−p(Θ) = IM−p (6)

We wish to assess proximity of zt(t = 1, . . . , T ) to the set of ran-
dom vectors

zt0 =
UM−p(Θ0)xt
||UM−p(Θ0)xt||

, (7)

where for the true DOAs Θ0 (in contrast to the estimated DOAs Θ),
the introduced vector zt0 is distributed with a complex angular cen-
tral Gaussian distribution with an (M−p)-variate scatter matrix that
does not depend on those DOAs or the τt distribution. We suggested
in [1] that the quality of the DOA estimate Θ̂p be assessed based on
the proximity of the scatter matrix of the normalized vectors zt to
the identity matrix, as per (M−p)-variate vectors zt0. In particular,
we suggested the use for this purpose of the traditional sphericity
test (ST):

ST (Θ) =
det R̂(Θ)[

1
M−pTrR̂(Θ)

]M−p (8)

where R̂(Θ) = 1
T
ZTZ

H
T . Yet, since zt(θ) is unit norm, ST ∝

det R̂(Θ), and so the EL technique proposed is to compare ST (Θ̂)
against the support of the distribution ST (Θ0), which does not de-
pend on Θ0 or τt and is fully specified by (M − p) and T . In [1],
rather than use an analytically derived p.d.f. of ST (Θ0, we con-
ducted Monte-Carlo simulations. Therefore, in this paper, we derive
the accurate analytic distribution for ST (Θ0), similar to [10] for the
real-valued case and [5] for the complex valued case.

2. SPHERICITY TEST FOR ANGULAR CENTRAL
GAUSSIAN DISTRIBUTED DATA

Since
UM−p(Θ0)xt ∼ CN (0, (τt + σ2

ω)I) (9)

zt0 ∼ CAG(0, IM−p) (10)

where CAG denotes the complex angular central Gaussian distribu-
tion [11]. In what follows, we derive the p.d.f. distribution for the
general case ST = det R̂ where R is the sample covariance ma-
trix formed from the normalized snapshots, i.e. R̂ = 1

T
ZTZ

H
T ,

and where zt is complex angular central Gaussian distributed zt ∼
CAG(0, IM ). The complex angular central Gaussian distribution is
specified in [11] as:

f(zt) = S−1
M |Σ

−1|(zHt Σ−1zt)
−M . (11)

For the considered case when

zt =
xt
||xt||

, xt ∼ CN (0, cIM ), (12)

we have

f(zt) ∼ S−1
M ; SM =

2πM

Γ(M)
(13)

Since integration over the surface
∑M
i=1 |zt|

2
i = 1 is to be used in

sequel, let us check the correctness of (13) by integrating

J1 =

∫
...
∫

|z1|2+...+|zM |2=1

dz1dz2 . . . dzM (14)

The complex-valued surface integral in (14) can be calculated as the
2M -variate real-valued surface integral yj , j = 1, . . . , 2M where
the complex valued zt is comprised of 2M variates as the alternating
real and imaginary components zj = yj + iyj+1.

J1 =

∫
. . .

∫
∑2M

j=1 y
2
j =1

dy1dy2 . . . dy2M (15)

For integration over the surface S described by equation xN =
f(x1, . . . , xN−1), we use the formula [12]∫

. . .

∫
S

g(x1, . . . , xN )dS =

=

∫
. . .

∫
D

g([x1, . . . , xN−1, f(x1, . . . , xN−1)] ×

×

√(
∂t

∂x1

)2

+ . . .+

(
∂f

∂xN−1

)2

+ 1 dx1dx2 . . . dxN−1

(16)

where D is the projection of the surface S on the (N − 1) plane. In
our case (15), we have

y2M = ±
√

1− y2
1 − ... − y2

2M−1 (17)

∂f

∂yj j 6=2M

=
yj√

1− y2
1 − ... − y2

2M−1

(18)

and√(
∂f

∂y1

)2

+ ... +

(
∂f

∂y2M−1

)2

+1 =
1√

1− y2
1 − ... − y2

2M−1

(19)
Therefore, with respect to the two solutions in (17), we get

J1 =

∫
. . .

∫
y21+...+y2

2M−1
≤1

dy1 . . . dy2M−1√
1− y2

1 − ... − y2
2M−1

(20)

According to equation 4.633 from [13], we get

J1 =
2πM

Γ(M)
; M > 1 (21)

Let us make the transformation

xj =
yj√
T

; yj =
√
Txj ; (22)

so that zj =
√
T (xj + ixj+1) and

TrX̃T X̃
H
T = 1 ; x̃j = xj + ixj+1 (23)

For the transformed data, we have

J2 = 2

∫
. . .

∫
x21+...+x2

2M−1
≤ 1

T

dx1 . . . dx2M−1√
1
T
− x2

1 − ... − x2
2M−1

=

= −2T−( 2M−1
2 )πM

Γ(M)
≡ SM.T (24)
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i.e.,
f(x1, ...x2M ) = (SM,T )−1 (25)

For T i.i.d. vectors xj , j = 1, . . . , T , we get

f(XT ) = S−TM,T ≡

[
2TT−T (M− 1

2
)πTM

ΓT (M)

]−1

(26)

Let us now consider the transformation XT = TL where T is an
(M × M) lower triangular matrix and L is (T × M) using the
standard methodology [14]. The rank of T = M , tjj > 0 and
LLH = IM . According to [15], the Jacobian of the transformation
XT = TL is given by:

J (XT → T ,L) = J1 × J2 × J3 (27)

where
J1 = |T |2T (28)

J3 =

M∏
j=1

[
(tjj)

−2j+1
]

(29)

and J2 is a function of L only, independent on T . Let us denote
J2 = g(L). Then the joint density of T and L is

f(T ,L) = g(L)

M∏
j=1

t
2(T−j)+1
jj f(TTH) (30)

where f(TTH) = S−TM,T . Therefore

f(T ,L) = S−TM,T g(L)

M∏
j=1

t
2(T−j)+1
jj (31)

We find by integrating out L that the density of T is

f(T ) = S−TM,T

∫
...
∫

LLH=1

g(L)dL

M∏
j=1

t
2(T−j)+1
jj ≡

≡ C1S
−T
M,T

M∏
j=1

t
2(T−j)+1
jj ; C1 =

∫
...
∫

LLH=1

g(L)dL (32)

With respect to (22), (30), and (31), we have

f(T ) = C

M∏
j=1

t
2(T−j)+1
jj ;

M∑
j=1

t2jj = 1 (33)

Let us find the distribution of the diagonal elements of the matrix T :
(t11, t22, . . . , tMM ). First let us make a transformation, preserving
the diagonal elements of T i.e. tij i<j = tiirij . The Jacobian of this
transformation is given by is equal to [15]

J (t11, . . . , tMM , t12, . . . , tM−1,M →
→ t11, . . . , tMM , r12, . . . , rM−1,M ) (34)

J (T → R) = 2M−1
M−1∏
i=1

t
2(M−i)
ii (35)

Thus, the probability of distribution f(t11, ..., tMM ) is defined as:

f(t11, ..., tMM ) = const.
∫
. . .

∫
i<j

drij×

×
M−1∏
i=1

t
2(T+M−2j)+1
ii t

2(T−M)+1
MM 2M−1 (36)

f(t11, ..., tMM ) = 2M−1Ct

M !1∏
i=1

t
2(T+M−2j)+1
ii t

2(T+M−2j)+1
MM

(37)
The constant Ct in (37) may now be found by integrating∫

. . .

∫
t211+···t2

MM
=1

f(t11, ..., tMM )dt11 · · · dMM = 1 (38)

Using tMM =
√

1− t211 − · · · − t2M−1,M−1 for this integration
(see (16)) along with (37), we then get

J3 = 2M−1

∫
. . .

∫
∑M−1

i=1 t2ii<1

∏M !1
i=1 t

2(T+M+1−2j)
ii dt11 · · · dtM−1,M−1

(1− t211 − · · · − tM−1,M=1)−(T−M)

(39)
According to equation (4.635.4s) from [13], we get

J3 =
2M−1

2M−1

Γ(1 + T −M)
∏M−1
j=1 Γ(T+M+1−2j)

Γ(1 + T −M) +
∑M−1
j=1 (T+M+1−2j)

=

=

∏M
j=1 Γ(T+M+1−2j)

Γ(TM)
(40)

Therefore, we finally get

f(t11, ..., tMM )=
Γ(TM)∏M

j=1 Γ(T+M+1−2j)

M∏
i=1

t
2(T+M+1−2j)+1
ii

t211 + · · · t2MM = 1 (41)

Now, note that the sphericity test

ST (R̂) ∼ det[XTX
H
T ] = det[TTH ] =

M∏
i=1

t2ii (42)

In order to find the p.d.f. for
∏M
i=1 t

2
ii ∼ ST0, find an expression for

the h-th moment and apply the inverse Mellin transform, as in [10].

E [deth(XTX
H
T )] =

= CT,M

∫
. . .

∫
∑M

i=1 t
2
ii=1

t
2(h+T+M−2j)+1
ii dt11 · · · dtMM (43)

CT,M =
Γ(TM)∏M

j=1 Γ(T +M + 1− 2j)
(44)

By applying the same methodology as in (16), we get

E [dethV ] =
Γ(TM)

∏M
j=1 Γ(h+ T +M + 1− 2j)∏M

j=1 Γ(T +M + 1− 2j)Γ[(h+ T )M ]
(45)

where V = XTX
H
T . Note that the expression (45) is quite impor-

tant in its own right for calculations of expected likelihood sphericity
test moments.

The inverse Mellin transform for (45) is therefore defined as

f(x) =
CT,M
2πi

σ+i∞∫
σ−i∞

x−s+1

∏M
i=0 Γ(T+M+1−2j+(s+1))

Γ[(T + s)M ]
ds

(46)
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Let us adopt the Gauss-Legendre multiplication formula [13]:

Γ[M(T + s)] = (2π)
1
2

(1−M)M (M(T+2)− 1
2

)×

×
M∏
j=1

Γ(T +
j − 1

M
+ s) (47)

with respect to (47), we get

f(x) = CT,M (2π)
1
2

(1−M)MMT− 1
2×

× 1

2πi

∫
x−s+1MMs

∏M
j=1 Γ(T+M+1−2j+s+1)∏M

j=1 Γ(T + j−1
M

+ s)
ds (48)

By substituting the scalar (T−M+1+s) with −s, this becomes

f(x) = CT,M (2π)
1
2

(1−M)M (M−1)T− 1
2

( x

MM

)T−M
× 1

2πi

∫ ( x

MM

)s ∏M
j=1 Γ(2M − 2j + 1− s)∏M
j=1 Γ(M

2+j−1−M
M

+ s)
ds (49)

Introducing the Meijer’s G-function (G.301, [13]), we get

f(x) = CT,M (2π)
1
2

(1−M)M (M−1)T−1×

×GM,0M,M

(
x

MM

∣∣∣M2−1
M

,M
2−2
M

,...,M
2−M
M

1,3,...,2M−1

)
(50)

where Ga,bc,d(·) represents the Meijer’s G-function.
Let us demonstrate for T → ∞, we have MVM → IM and

E [detV ]→ ( 1
M

)M . According to (45), we have

lim
T→∞

E [detV ]⇒ TM

(TM)M
=

1

MM
(51)

Alternatively, for a minimally sampled case where T = M , we have

E [detV ] = −
∏T−1
j=0 (1 + 2j)∏T−1
j=0 (T 2 + j)

≤
(

2

T 2

)T
(52)

which as expected is a significantly smaller value.
Comparing the statistical properties of the above sphericity test

for the complex angular central Gaussian distribution with the prop-
erties of the conventional sphericity test for complex Gaussian dis-
tributed data, introduced in [5], the interested reader can see the close
analogy between the separate distributions, with the key property be-
ing the dependence of the LR probability density function only on
parameters (M , T , and p) which can be determined a priori.

The derived analytical formulas are also in good agreement with
separately generated direct Monte-Carlo simulations for this partic-
ular circumstance, published recently in [1].

3. CONCLUSION

In this paper, we derived the accurate expressions for the arbitrary
moment of the “expected likelihood” sphericity test and its p.d.f.
for the complex angular central Gaussian distribution, used in ex-
pected likelihood assessment of the quality of DOA estimates in sig-
nal mixtures with compound Gaussian (impulsive) interference and
Gaussian noise.
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