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ABSTRACT
We further delay embedding framework application to mul-
tiple time series for extraction of their potential causal inter-
actions. We introduce a novel geometric model-free causal-
ity measure that can efficiently detect linear and nonlinear
causal interactions between time series with no prior informa-
tion or parameter estimation. Using multivariate delay em-
bedding, we construct a point cloud from a set of time do-
main signals and propose the inverse of its fractal dimension
as a causal interaction measure between the corresponding
time series. Correlation dimension estimation is fully ex-
ploited as a fractal-based method for uncovering the dimen-
sions of generated point clouds. Extensive simulation results
are presented to substantiate the capabilities of the proposed
approach.

Index Terms— Causal interaction, multivariate delay
embedding, time series analysis.

1. INTRODUCTION

Causal interaction among a set of signals is deduced if a
significant potentially time-lagged influence between the cor-
responding time series is discovered. Causality detection has
important applications in neuroscience [1–3], economics [4]
and computational biology [5]. Various causality measures
have been proposed for quantifying this influence, many
of which have important limitations. These approaches are
mainly formulated using autoregressive(AR) models such as
Granger causality [6], the cross spectrum such as coherence
and phase slope index [7], or directed transfer function [8],
and partial directed coherence methods [9]. Most of these
measures are rooted in linear regression modeling and can-
not identify the nonlinear interactions between signals. For
example Granger causality as a widely used tool in many
valuable applications in neuroscience is based on a linear
bivariate autoregressive model. It has also been recently ex-
tended based on a nonlinear autoregressive model by fitting
a nonlinear polynomial model [10]. This however requires
prior knowledge of the system model. Since in many applica-
tions such as brain data analysis, the interaction structures are

Research supported by National Science Foundation EEC-1160483

unknown in advance, a model-free causality measure which
accounts for nonlinear as well as linear causal interactions is
highly desirable.

In this paper, we present a geometric, non-parametric and
model-free causality measure based on manifold learning that
can efficiently detect linear and nonlinear causal interactions
between time series. This framework is based on the concept
of multivariate delay embedding. The mathematical foun-
dation of delay coordinate embedding method was first pro-
posed by Takens [11] to capture the dynamics of a time series
in a higher dimensional space. There is a large body of litera-
ture on the application of delay embedding to dynamical sys-
tems with chaotic attractors [12,13]. We have used univariate
time delay embedding as an efficient tool for identification of
quasi-harmonic patterns in signals as well as estimating their
spectral characteristics [14, 15]. In this study, we extend the
delay embedding framework to more than one modality data
by developing an approach for evaluating causal interactions
using the dimension of multivariate delay embedding. We use
fractal dimension as a measure of the intrinsic dimensionality
of the point cloud.

The remainder of the paper is organized as follows. In
Section 2, we describe in detail our proposed analysis frame-
work. The multivarie delay embedding approach is first
formulated in Section 2.1. Correlation dimension estimation
is presented in Section 2.2 as a fractal-based method to de-
termine the dimension of multivarie delay embedding point
clouds. We present our causal interaction measure in Section
2.3 and validate the introduced approach using experimen-
tal results in Section 3. Several examples are provided to
evaluate the capability of the proposed measure in detecting
directed, linear and nonlinear causal interactions in both noise
free and noisy cases. Finally, Section 4 concludes the paper.

2. CAUSALITY BY DELAY EMBEDDINGS

2.1. Multivariate Delay Embedding

Univariate delay embedding for a time series {xn}Nn=1 is de-
fined as {Xn} = (xn, xn−τ , . . . , xn−(m−1)τ ), where τ is the
time delay, and m is the embedding dimension. With a sim-
ilar intuition, multivariate delay embedding of p time series
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{xi,n}Nn=1, i = 1, 2, . . . , p can be defined as

{Xn} = (x1,n, x1,n−τ , . . . , x1,n−(m1−1)τ , x2,n,

x2,n−τ , . . . , x2,n−(m2−1)τ , . . . , xp,n−(mp−1)τ ), (1)

where m = (m1,m2, . . . ,mp) is the embedding dimension
vector, and determines the number of components included
from each time series. The ambient dimension of the embed-
ding space is therefore M =

∑p
i=1mi. In a more general

case, different τ ’s for each time series can be used as

{Xn} = (x1,n, x1,n−τ1 , . . . , x1,n−(m1−1)τ1 , x2,n,

x2,n−τ2 , . . . , x2,n−(m2−1)τ2 , . . . , xp,n−(mp−1)τp), (2)

where τ = (τ1, τ2, . . . , τp) is the time delay vector for p time
series. Non-uniform multivariate delay embedding which is
the most general embedding technique can be defined for mi

varying delays denoted by lij , j = 1, . . . ,mi at each time se-
ries {xi,n}Nn=1 as {Xn} = (x1,n−l11 , x1,n−l12 , . . . , x1,n−l1m1

,
x2,n−l21 , . . . , xp,n−lpmp).

2.2. Fractal-based Dimension Estimation

While the multivariate embedding point cloud is embedded in
space RM , its intrinsic dimension is not necessarily M . The
intrinsic dimension is defined as the minimum number of free
variables needed to represent the data (degrees of freedom)
with no loss of information. Equivalently, the intrinsic dimen-
sion of a dataset in RM is equal to d if its elements lie totally
within a d-dimensional subspace of RM , where d < M [16].
The fractal dimension of a set of points is an important mea-
sure of the intrinsic dimensionality of the points. Fractal-
based dimension estimation techniques are global methods
that can provide a non-integer value as the intrinsic dimen-
sion of data. A variety of techniques have been previously
proposed for fractal dimension estimation [17]. Correlation
dimension [18] is a computationally efficient approach for es-
timating intrinsic dimension. Suppose S = {s1, s2, ....sn} is
a set of data points in RM . The correlation integral C(n, r) is
defined as

C(n, r) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

I(‖sj − si‖ ≤ r), (3)

where I(.) is an indicator function, i.e. I(λ) = 1 if and only
if condition λ holds and zero otherwise. Also, ‖sj − si‖ de-
notes the Euclidean distance between data points sj and si.
C(n, r) is basically the probability of a pair of points having
a distance smaller than or equal to r. The correlation fractal
dimension Dc of S is then defined as

Dc = lim
n→∞

lim
r→0

ln(C(n, r))

ln r
. (4)

Dc is estimated in practice by using the plot of lnC(n, r) with
respect to r and by computing the slope of its linear part.

2.3. CIM: Causal Interaction Measure

In this section, we introduce our proposed causal interaction
measure based on the intrinsic dimension of multivariate de-
lay embeddings. Consider three time series X = {xn}Nn=1,
Y = {yn}Nn=1 and Z = {zn}Nn=1 and their multivariate
delay embedding vectors (xn, yn−τ1) and (xn, zn−τ2). The
causal interaction between time seriesX = {xi}Ni=1 and Y =
{yi}Ni=1 with delay τ1 is higher than the causal interaction
between time series X = {xi}Ni=1 and Z = {zi}Ni=1 with
delay τ2 if the dimension of the point cloud represented by
(xn, yn−τ1) is lower than the dimension of the point cloud
(xn, zn−τ2). (The theoretical proof can be found in [19].) In
order to find the delay corresponding to the strongest causal
interaction between time series, we simply replace Z with
Y in the statement above and conclude the following: The
causal interaction between time seriesX = {xi}Ni=1 and Y =
{yi}Ni=1 with delay τ1 is higher than the causal interaction be-
tween them with delay τ2 if the dimension of the point cloud
represented by (xn, yn−τ1) is lower than the dimension of the
point cloud (xn, yn−τ2).

We denote the dimension of the delay embedding point
cloud (xn, yn−τ1) as dXY and propose 1/dXY as a causal in-
teraction measure (CIM) between time series X = {xi}Ni=1

and Y = {yi}Ni=1 with delay τ1. In other words, there is a
directed information flow from X to Y with delay τ1 with
strength 1/dXY . We exploit the correlation dimension esti-
mation method to compute the dimensions of the point clouds
as described in Section 2.2. The calculated fractal dimension
and the final CIM values are therefore not necessarily integer
numbers. For example, when we construct two-dimensional
multivariate emebedding, the smallest dimension value cor-
responds to a curve and occurs when the highest interaction
exists between two time series. Also, the largest possible di-
mension equals the dimension of the ambient space which
corresponds to the case where there is no interaction between
the two time series (2 in this case).

2.4. Efficient Estimation: A Computational Approach

As investigating all possible combinations of the whole time
series is computationally complex, we use a progressive ge-
ometrical method to build the embedding vectors. First, we
determine a maximum lag according to the existing practi-
cal estimations of maximum delays in the causal interaction
between time series {xi,n}Nn=1, i = 1, 2, . . . , p as Li, i =
1, . . . , p. We will then construct a candidate embedding vec-
tor using all L1 + L2 + . . .+ Lp elements as

B = (x1,n, x1,n−1, . . . , x1,n−L1
, x2,n, x2,n−1, . . . , xp,n−Lp

).
(5)

The embedding vector b to be chosen is a subset of B includ-
ing the time series with causal interactions with the corre-
sponding delays. Similar to the concept of Granger causality,
we can infer that the selected embedding vector is to increase
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our knowledge about the future of the system in one or several
steps ahead. Suppose that for time series {xi,n}Nn=1, Ti future
steps need to be investigated. The future state of the system
is then denoted by XF = (xi,n+1, xi,n+2, . . . , xi,n+T1

) .
One possible solution for constructing the embedding

vector b starts with an empty vector b0. Suppose that
the selected embedding vector at step (j − 1) is bj−1 =
(x?1, x

?
2, . . . , x

?
j−1). At step j, the element x?j ∈ B \ bj−1

will be added to bj−1 to build a candidate vector for the
next step bj . We will then analyze the point cloud of the
delay embedding vector bj with x?1, x

?
2, . . . , x

?
j−1 and x?j as

the corresponding coordinates. If the point cloud forms a
manifold with an intrinsic dimension less than a predefined
threshold, we conclude that there is significant interaction
between the components of bj . As a result, we include x?j
in the embedding vector. Otherwise, x?j will be skipped and
the next element will be taken into consideration. This recon-
struction scheme is based on the causality measure presented
in Section 2.3, meaning the intrinsic dimension of the mul-
tivariate delay embedding is inversely related to the strength
of causal interaction between the corresponding time series.
The dimensionality estimation of the delay embedding point
clouds constructed using real data sets, will be performed
using correlation dimension estimation method. The thresh-
old on the obtained fractal dimension can be experimentally
determined and components that establish a dimension less
than the selected threshold will be included in the embedding
vector.

The approach described above is a general formulation
and can describe a variety of models. Our previous framework
of univariate delay embedding [20, 21] can be obtained when
XF and B include elements from the same time series. Cross
modeling happens when XF has elements from one time se-
ries and B from another one. The more general case is mixed
modeling when XF has elements from one time series and B
from all the existing time series in the application. The most
comprehensive condition is full modeling when XF and B
both have elements from all time series.

3. EXPERIMENTAL VALIDATION

In order to substantiate the ability of the proposed causal in-
teraction measure to identify linear and nonlinear directed
interactions within different delays, we analyze various syn-
thetic data including an example with linear directed flow, an
auto-regressive(AR) process and unidirectional Hénon map.
Example 1: In this example, we test the capability of our
proposed method in detecting simple linear directed causal
interaction by considering a process fully dependent on an-
other one. Time series {yi}Ni=1 is causally affected by series
{xi}Ni=1 with delay 1, while {xi}Ni=1 is independent, as ex-
pressed by the following equation.

xi = wx,
yi = axi−1,

(6)

Fig. 1. Estimated dimensions of multivariate delay embed-
dings of the process presented in Example 1. Blue: dimension
of (yn, xn−1), red: dimension of (xn, yn−1).

where wx is zero mean white Gaussian noise with standard
deviation of 1 and a = 0.5. We constructed multivariate delay
embeddings (xn, yn−1) and (yn, xn−1) and calculated the di-
mensions of the two point clouds for 180 different realizations
of the random noise. Figure 1 illustrates the estimated dimen-
sions of the point clouds (xn, yn−1) and (yn, xn−1) in red
and blue, respectively. Clearly, the dimension of (yn, xn−1)
is much lower than (xn, yn−1), showing strong information
flow from X to Y with delay 1. The average dimension over
all realizations for (xn, yn−1) and (yn, xn−1) are 1.84 and
0.98, respectively. Therefore, the CIM value equals 0.54 for
information flow from Y to X and 1.02 for information flow
from X to Y , showing a strong flow from X to Y with delay
1. This example validates the ability of the proposed method
in detecting the direction of linear causal interaction between
two time series. Moreover, the average dimensions of the
multivariate delay embeddings for values of delays other than
1 are also much greater than those for (yn, xn−1). Specifi-
cally, the average dimension for (xn, yn−2) and (yn, xn−2)
are 1.85. This shows the capability of our method in identify-
ing the correct delay in causal interaction.
Example 2: In this example, we validate the capability of
the proposed method to identify directed linear causal interac-
tions in a first order AR process, where the second time series
is driven by the first one according to the following equation:

xi = 0.5xi−1 + ui,
yi = 0.2yi−1 + 0.8xi−1 + vi,

(7)

where ui and vi represent independent white Gaussian noise
with standard deviation of 1 and 0.3, respectively. Each series
consists of 200 samples, and 180 realizations of the process
are implemented. We constructed two dimensional multivari-
ate delay embeddings of {xi}Ni=1 and {yi}Ni=1. The dimension
of (yn, xn−1) is always less than dimension of (xn, yn−1) as
illustrated in Figure 2 for different realizations. The average
dimension over all realizations for (xn, yn−1) and (yn, xn−1)
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Fig. 2. Estimated dimensions of multivariate delay embed-
dings of the AR process in Example 2. Blue: dimension of
(yn, xn−1), red: dimension of (xn, yn−1).

Fig. 3. Hénon system’s point cloud as the coupling strength
increases in the range [0.01, 0.6].

are 1.83 and 1.65, respectively. Therefore, the CIM value
equals 0.54 for information flow from Y to X and 0.61 for
information flow from X to Y , confirming the existence of a
stronger information flow from {xi}Ni=1 to {yi}Ni=1 with de-
lay 1, validating the proposed method in identifying directed
linear causal interaction.
Example 3: In this example, we validate the effectiveness
of the proposed method in detecting nonlinear causal interac-
tions and in identifying different interaction strengths using
coupled Hénon system with various coupling strengths. The
coupled Hénon map is given by

xi = 1.4− x2i−1 + 0.3xi−2
yi = 1.4− (Cyi−1xi−1 + (1− C)y2i−1) + 0.3yi−1,

(8)

where C is the coupling strength and in this experiment takes
many values in the range [0.01, 0.6]. For each value of C, we
construct two dimensional multivariate delay embeddings for
time series of length 200 samples with delay 1 as (yn, xn−1).
Four samples of the embedding point clouds are shown in
Figure 3 as the coupling strength increases. The dimension
of the point cloud for each value of coupling strength C is
illustrated in Figure 4. Clearly, the dimension of the delay
embedding decreases as the driving strength increases. These
results demonstrate the capability of our method in determin-
ing the strength of causal interactions. Moreover, for compar-

Fig. 4. Top: the dimension of multivariate delay embedding
(yn, xn−1) for coupled Hénon map for different coupling
strengths in [0.01, 0.6], compared with that of (zn, xn−1),
where {zi}Ni=1 and {xi}Ni=1 are independent. Bottom: same
results in the presence of noise.

ison we have shown in Figure 4 the dimension of the point
cloud (zn, xn−1) for an arbitrary independent nonlinear sys-
tem given by zi = sin(i) + 1.5 sin(zi−1)) + 0.6. Since there
is no interaction between {xi}Ni=1 and {zi}Ni=1, the dimen-
sion of (zn, xn−1) is higher than all dimensions obtained for
Hénon system. We add white Gaussian observation noise
with SNR = 20dB to each time series and repeat the exper-
iment. In the presence of noise, the dimension of (yn, xn−1)
slightly increases but the results in detecting the causal inter-
action, and its strength are similar to the time series with no
noise as shown in Figure 4.

4. CONCLUSION

In this study, we proposed a geometric model-free causality
measure based on fractal dimension of multivariate delay em-
bedding. This measure demonstrates a capacity of efficiently
detecting linear and nonlinear directed causal interactions be-
tween time series with no prior model of the system. Future
work will focus on exploiting the proposed causality measure
in electroencephalography(EEG) and magnetoencephalogra-
phy (MEG) signal analysis to construct a comprehensive map
of brain activity while processing different stimuli.
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