
A NEW GENERALIZATION OF THE DISCRETE TEAGER-KAISER ENERGY OPERATOR -
APPLICATION TO BIOMEDICAL SIGNALS

Meryem Jabloun

PRISME laboratory of the Orleans University, 12 rue de Blois, 45067 Orleans.
E-mail: meryem.jabloun@univ-orleans.fr. http://www.univ-orleans.fr

ABSTRACT

The discrete Teager-Kaiser operator (TKO) was firstly in-
troduced in [1]. Generalized versions of this operator (GTKO)
were proposed later in [2]. Both the TKO and GTKO were
able to detect instantaneous amplitude changes of signals and
they significantly improved the signal to noise ratios (SNR).
The TKO, as well as the GTKO, can be viewed as the deter-
minant of an embedding square matrix of size2 × 2 that is
built using a window sliding over signals. In the present pa-
per, we propose a new extension of these operators and we
define the extended GTKO (EGTKO) as the determinant of
an embedding matrix of sized × d with d ≥ 2. We discuss
different structures of such an embedding matrix.

The detection of instantaneous amplitude changes can be
achieved by applying a threshold to the proposed EGTKO. To
theoretically determine the optimal threshold that allowsfor
the most accurate detection, we present a statistical charac-
terization of the EGTKO based on the determinant theory of
random matrices. The receiver operating characteristic (ROC)
curves obtained at different SNR show that the accuracy of the
EGTKO outperforms that of the TKO and GTKO. An applica-
tion to a real biomedical signal is also presented and illustrates
the superiority of the proposed EGTKO.

Index Terms— Teager-Kaiser operator, random matrix
determinant, detection, biomedical signal, electromyography.

1. INTRODUCTION

The Teager-Kaiser energy operator (TKO) was defined in [1]

for a continuous timet and a signalx(t) asΨ(t) =
(

∂x(t)
∂t

)2

−
x(t)∂

2x(t)
∂t2

, and then for a discrete timen as

Ψ[n] = x2[n]− x[n− 1] x[n+ 1]. (1)

This nonlinear operator was able to localize instantaneous
amplitude changes of signals and it significantly improved the
signal to noise ratios (SNR) [3, 4, 5, 6]. The TKO usefulness
has been proven in many research fields, including biomedical
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signal processing [3, 4], speech analysis [5] and communica-
tions [6].

In [2], a generalized version of the Teager-Kaiser operator
(GTKO) was defined as

Ψ[n] = x[n]x[n+ k]− x[n− h]x[n+ k + h], (2)

wherek andh are discrete time lags. This operator (2) corre-
sponds to an asymmetric discrete energy velocity measure for
k=1 andh=1 whereas it yields a discrete energy acceleration
measure fork=2 andh=1, accordingly to [2]. The main ad-
vantage of this GTKO (2) over the TKO (1) lies in its superior
localization of changes of instantaneous amplitudes.

The GTKO (2) can be viewed as the determinant of a
square matrix of size2 × 2 built by embedding the observed
signal in its time delayed coordinates [7]

Ψ[n] = det

(

x[n] x[n+ k + h]

x[n− h] x[n+ k]

)

. (3)

The TKO (1) is obtained by settingk=0 andh=1 in (3) and it
appears to be the determinant of a2× 2 Toeplitz matrix [7].

In the present paper, we propose an extend generalized
Teager-Kaiser operator (EGTKO) that we define as the deter-
minant of an embedding square matrix of a higher sized× d,
with d ≥ 2. This EGTKO is expected to further improve the
localization of changes of instantaneous amplitudes.

We discuss various possibilities of the embedding matrix
structure: independent entries, Toeplitz and symmetric. We
also focus on the statistical properties of the EGTKO based
on the determinant theory of random matrices. It is worth
noting the characterization lack of the TKO (1) and GTKO
(2) probability density function (pdf).

The detection of instantaneous amplitude changes of sig-
nals can then be achieved by comparing the proposed EGTKO
to an optimal threshold. To the best of our knowledge, we
theoretically derive for the first time the expression of theop-
timal threshold that allows for the most accurate detection,
whatever thed value.

To demonstrate the accuracy superiority of the proposed
EGTKO over the TKO and GTKO, receiver operating charac-
teristic (ROC) curves obtained at different SNR are presented.
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An application to a real biomedical signal is also provided.

The paper is organized as follows. Section 2 presents
the proposed EGTKO whereas Section 3 details its statistical
feautres. Section 3 is dedicated to the theoretical derivation of
the optimal threshold for detection purposes. The feasibility
and interest of the EGTKO compared to TKO and GTKO are
illustrated in Section 5 using ROC curves and a real biomedi-
cal signal. Finally, Section 6 draws the conclusions and work
in progress.

2. PROPOSED EGTKO

Let us consider a 1-D signalx[n] wheren = 0, 1, . . . , N − 1
andN is the sample number. This signal can be transformed
into vectorsxn of lengthd by embedding it in its time delayed
coordinates

xn = [x [n] , x [n−m] , x [n−2m] , . . . , x [n−(d− 1)m]]T, (4)

where(.)T denotes the transpose operator andm is a time lag.
An embedding matrixXn of sized× d is built as

Xn =
[

xn,xn+s, . . . ,xn+(d−1)s

]

, (5)

wheres 6= 0 is a time lag.
The matrix entries are(d− 1)(s+m) + 1 samples taken

using a sliding window[n− (d− 1)m,n+ (d− 1) s] over
the considered signal. The explicit expression ofXn is

Xn =















x[n] x[n+s] . . . x[n+(d−1)s]

x[n−m] x[n−m+s] . . . x[n−m+(d−1)s]

.

.

.
.
.
.

. . .
.
.
.

x[n−(d−1)m] x[n−(d−1)m+s] . . . x[n−(d−1)(m−s)]















.

(6)

We then define the EGTKO, denoted byΨd,m,s[n] as

Ψd,m,s[n] = det (Xn) . (7)

The TKO (1) can be viewed as a special case of (7) by fixing
d=2 ands=m=1 in (7). Additionally, the GTKO (2) turns
out to be also a special case of (7) when selectingd=2 and
k=s−m andh=m.

This definition of the EGTKO (7) proposed is also moti-
vated by the fact that the determinant is an algebraic operator
that helps quantify the notion of near singularity. Moreover,
the determinant is an alternating-multilinear form of the ma-
trix entries that verifies the property of similarity invariance
(basis independent) [8].

3. STATISTICAL PROPERTIES OF EGTKO

The statistical properties of the EGTKO (7) are dependent
not only on the structure of the embedding square matrixXn

(Toeplitz, symmetric, independent entries,...) but also on the
assumptions made on the distribution law of the matrix entries
(Gaussian, exponential, uniform,...). Due to lack of space,
only some scenarios are presented.

3.1. EGTKO with d=2

Basic statistics of TKO (1) and GTKO (2) were addressed in
[1, 7, 9]. However, it must be pointed out that only mean and
variance were obtained when the input signal is an additive
zero-mean white Gaussian noise and/ or sum of sinusoids. We
here aim at filling the lack of distribution law of EGTKO (7)
with d=2 and,a fortiori, that of TKO and GTKO.

3.1.1. Independent random normal matrix entries d=2

Let us suppose that the matrix entries (6):x[n], x[n+s], x[n−
m] andx[n+ s−m] are mutually independent random vari-
ables (s 6=0, m 6=0, s 6=m ands 6=−m), each normally dis-
tributed, with meansµ0, µs, µm andµs−m and a common
varianceσ2

w. For the sake of notation simplicity, we denote
byΨ the random determinantΨ=Ψd,m,s[n].

The assessment of the pdf and cumulants of the determi-
nant of such a matrix is an old mathematical subject [10, 11].
When all the meansµi vanish the exact law ofΨ is calculated
to be the Laplace distribution [10, 11]

pΨ(ψ) =
1

4σ2
w

exp

(

− |ψ|
2σ2
w

)

for ψ ∈ R. (8)

When the meansµi are not zero, the distribution ofΨ is
skewed, and is not expressible in a simple closed form. How-
ever, a straightforward inversion of the characteristic function
of Ψ with σ2

w=1 is possible and yields the exact pdf ofΨ [11].
This characteristic function and its associated pdf are

ϕΨ(z) = E
[

ejzΨ
]

= 1
1+z2 exp

(

−Λz2+2j∆z
2(1+z2)

)

,

pΨ(ψ) =
1
2π

∫

∞

−∞
e−jψzϕΨ(z)dz,

(9)

respectively, wherej2=−1, E[.] is the expectation and

Λ = µ2
0 + µ2

s + µ2
m + µ2

s−m, 0 ≤ Λ < +∞,

∆ = µ0µs−m − µsµm, −Λ
2 ≤ ∆ < Λ

2 .
(10)

The cumulants ofΨ can be obtained by expanding the loga-
rithm ofϕΨ(z) [11].

3.1.2. Random Gaussian Toeplitz matrix entries d = 2

Let us assumes=m, the matrix (5) is then a2 × 2 Toeplitz
matrix. To our knowledge, we derive for the first time the
expression of the determinant pdf of such a matrix. To that
end, we first determine the expression of the characteristic
function under the assumption of mutually independent en-
triesx[n], x[n + s] andx[n −m] (s 6=0, m 6=0 ands 6=−m),
each normally distributed with a common varianceσ2

w=1 and
meansµ0, µs andµm, respectively:

ϕΨ(z) = E
[

ejzΨ
]

= e

jzµ2
0

1−2jz

(1−2jz)
1
2

e
−

(µ2
s+µ2

m)z2+2jµsµmz

2(1+z2)√
(1+z2)

(11)
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Fig. 1. EGTKO pdf for normally distributed random entries of a
2× 2 Toeplitz matrixXn. The common varianceσ2

w=1 and means
{µ0, µs, µm} are equal to{0, 0, 0} (left column) and{1, 2, 3} (right
column). Theoretical pdfs (11) (red curve) are superimposed to the
normalized histograms.

The EGTKO pdf is then obtained by the Fourier transform
of (11). Figure 1 displays such a pdf. We also derive the
cumulants ofΨ by expanding the logarithm ofϕΨ(z) (11)

c2h = (2h)!

(

µ2
s+µ

2
m

2
+ 1

2h
+ 22h−2

(

1
h
+ 2µ20

)

)

c2h+1 = (2h+ 1)!
(

22h
(

µ20 + 1
2h+1

)

− usµm

)

.

(12)

In particular the mean, variance, skewness and kurtosis ofΨ

are given by1+µ2
0−µsµm, 4µ2

0+µ
2
s+µ

2
m+3, 6(4µ2

0+
4
3
−µsµm)

(4µ2
0
+µ2

s+µ
2
m+3)

3
2

,

and 12(16µ2
0+µ

2
s+µ

2
m+ 9

2
)

(4µ2
0
+µ2

s+µ
2
m+3)2

, respectively.

We note that the pdf ofΨ2,m,s[n] shown in Fig.1 can be
easily generalized for a common varianceσ2

w not necessar-
ily equal to one, provided that means{µ0, µs, µm} are equal
to {0, 0, 0}. This generalization can be viewed as a scaled
probability 1

σ2
w
pΨ(

ψ
σ2
w
). We also note that for this latter case,

we retrieve a classical result: the EGTKO mean is exactly the
variance of the Gaussian processE [Ψ2,m,s[n]] = σ2

w.

3.1.3. Random Gaussian symmetric matrix entries d=2

Let us assumes=−m, the matrix (5) is then a2×2 symmetric
matrix, called a Hankel matrix [12]. To our knowledge, we
derive the determinant pdf of such a matrix for the first time.
So, we first derive the expression of the characteristic function
by substituting−z to z andµs−m to µm in (11), under the
assumption of mutually independent entriesx[n], x[n+s] and
x[n − m + s] (s 6=0, m 6=0 ands 6=m), each being normally
distributed with a common varianceσ2

w=1 and meansµ0, µs
andµs−m, respectively. The pdf is then obtained by Fourier
transform of this characteristic function.

3.2. EGTKO with d≥ 3

There are very few analytic expressions of the exact pdf of
random determinants withd ≥ 3 and one can instead find
asymptotic expressions [10]. The case of independent iden-
tically distributed (i.i.d) normal matrix elements with zero-
mean and unit common variance is considered in [10]. Com-

plex expressions of the asymptotic behaviours of the determi-
nant pdfs are provided for alld ≥ 3 whereas exact pdfs are
only derived up tod = 4:
pΨ(ψ) = 1√

2π

∫∞

0 r exp
(

− r2

2
− ψ

r

)

dr with Ψ = Ψ3,m,s[n]

pΨ(ψ) = ψ

2
K2(2

√
ψ) with Ψ = Ψ4,m,s[n].

(13)

The related exact moments of the determinant (7) are also
provided in [10]. Both pdfs (13) can be easily generalized for
a common variance not necessarily unit.

In [13], it is shown the log-normality of the determinant
of a standard real Gaussian random matrix whose entries are
i.i.d. whend tends toward∞. More precisely, the Lyapunov’s
central limit theorem holds forlog (|Ψ|):

log (|Ψ|)− 1
2 log ((d− 1)!)

√

log(d)
2

weakly converges−→ N (0, 1) . (14)

4. OPTIMAL THRESHOLD FOR DETECTION

We determine the theoretical optimal threshold to apply on
the EGTKO output for an accurate detection of instantaneous
amplitude changes. The idea is to monitor the threshold selec-
tion by only setting the probabilities of false alarmPfa and/or
good detectionPgd of events of interest (occurring changes).
To that end, when only noise is present we define for any
ξ ≥ 0 the false alarm probability as

Pfaξ = P[ |Ψd,m,s[n]| ≥ ξ;Xn entries (5) are noise samples] .
(15)

It is the probability that specific noise samples lead an EGTKO
output above a thresholdξ and can be misinterpreted as signal
samples. Similarly, when the signal of interest and noise are
both present, we define for anyξ ≥ 0 detection probability as

Pgdξ=P[ |Ψd,m,s[n]| ≥ ξ;Xn entries (5) are noisy signal samples] ,
(16)

It is the probability that signal samples corrupted by noise
lead an EGTKO output above a thresholdξ. Therefore, the
best thresholdξ is the one that minimizes thePfaξ and maxi-
mizesPgdξ .

Let us denote byF−1
Ψd,m,s[n]

the inverse of the cumulative
distribution related to the (scaled) pdf of the EGTKO (7). Let
us also assume both the noise and free noise signal samples
to be zero-mean Gaussian with a standard deviationσw and
σs, respectively. The theoretical expressions of the optimal
thresholdξ (15) and (16) that we derive are given by

ξ = σdwF
−1
Ψd,m,s[n]

(

1−
Pfaξ

2

)

, (17)

ξ = (σ2
w + σ2

s)
d
2 F−1

Ψd,m,s[n]

(

1−
Pgdξ

2

)

. (18)

Under the assumption of Section 3.1.1 and using (8), (15)
and (16), (17) and (18) write

Pfaξ = exp

(

− ξ

2σ2
w

)

andPgdξ = exp

(

− ξ

2(σ2
w + σ2

s)

)

. (19)
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This leads the following relationship, withSNR= 10 log10

(

σ2
s

σ2
w

)

log
(

Pfaξ

)

= log
(

Pgdξ

)(

1 + 10
SNR
10

)

. (20)

Figure 2.a shows the receiver operating characteristic (ROC)
curves related to (20) for different SNR values.
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Fig. 2. ROC curves of EGTKO detector at different SNR values,
5, 10 and 15 dB, obtained under the assumptions assumed in: (a)
Section 3.1.1 withd=−m=2 ands=1 i.e. GTKO with k=3 and
h=−2, (b) Section 3.1.2 withd=2 ands=m=1 i.e. TKO, (c)
Section 3.2 withd=−m=3 ands=1 and finally (d) withd=−m=4

ands=1.

Under the assumption of Section 3.1.2 or Section 3.1.3 or
Section 3.2, analytic expressions of false alarm and good de-
tection probabilities are difficult to explicit. However, since
the pdf can be numerically evaluated from (11) or (13), ROC
curves can be numerically deduced from (17) as shown in
Fig.2b, c and d. Actually, Fig.2a corresponds to the GTKO
(2) whereas Fig.2b corresponds to the TKO (1). As, one can
notice from both figures, the detection probability is reduced
using TKO compared to that of GTKO for a given false alarm
probability. This result supports the use of the first proposal
of the GTKO [2] instead of the conventional TKO [1].

Additionally, as one can notice from Fig.2, the EGTKO
defined withd=4 provides the best ROC curves compared to
the EGTKO defined withd=3 andd=2. Once again, this
result lends support for the use of the proposed EGTKO (7)
instead of the GTKO (2). Indeed, increasing the matrix size of
Xn (5) seems to reduce the false alarm probability while the
rate of good detection is increased. A better discrimination
between only noise and the signal presence is expected.

Under the assumption of Section 3.2 and whend → ∞
(in statistic practice ford ≥ 33), it would be preferable to
derive the optimal threshold for the logarithm of the EGTKO
output using (14)

ξlog = − 1
2
log ((d− 1)!) +

√
2
√

log(d)
2

erfinv
(

1− Pfaξ

)

+

log
(

σdw
)

,

ξlog = − 1
2
log ((d− 1)!) +

√
2
√

log(d)
2

erfinv
(

1− Pgdξ

)

+

log

(

(

σ2
w + σ2

s

) d
2

)

,

(21)

where erfinv(.) is the inverse error function [14].

5. APPLICATION TO BIOMEDICAL SIGNALS

We here apply the proposed EGTKO to a surface electromyo-
graphy (sEMG) signal acquired at a sampling rate 1999 Hz
from the right soleus of a healthy subject during gait. The
EGTKO is built with an embedding matrix sized=2, 3, 4 and
33 and withs=1 andm=−d for all cases. The desired detec-
tion probability is set equal to 90%. As one can notice from
Fig.3, the best localization of on-off timing of the sEMG sig-
nal is obtained usingd=33.
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Fig. 3. Application to the localization of instantaneous amplitude
changes of a sEMG signal:d=2, 3, 4 and 33 from top to bottom and
with s=1 andm=−d for all cases. The desired detection probability
is set equal to 0.9.

6. CONCLUSIONS

we propose a new generalization of Teager-Kaiser operator,
named EGTKO, that helps improve the SNR and contributes
to a higher accuracy of localization of signal changes. The
proposed EGTKO is defined as the determinant of an embed-
ding matrix built from the signal itself. The localization ac-
curacy of the proposed EGTKO is dependent on the selection
of the matrix sized ≥ 2, the matrix structure (independent
entries, Toeplitz or symmetric) tuned by parametersm and
s, and finally the thresholdξ theoretically selected in such a
way as to maximize the detection probability while minimiz-
ing the false alarm. In future work, we aim at comparing the
EGTKO to existing tools of biomedical signal segmentation.
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