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ABSTRACT signal processing [3, 4], speech analysis [5] and communica

. . ) . tions [6].
The discrete Teager-Kaiser operator (TKO) was firstly in- . . .
N b ( ) y In [2], a generalized version of the Teager-Kaiser operator

troduced in [1]. Generalized versions of this operator (@)K )

were proposed later in [2]. Both the TKO and GTKO Were(GTKO) was defined as

able tq dgtgct instgntaneous amplitude chapges qf signals a Uln] = z[njz[n + k] — z[n — hlan+k+ 1], (2)

they significantly improved the signal to noise ratios (SNR)

The TKO, as well as the GTKO, can be viewed as the detewherek andh are discrete time lags. This operator (2) corre-

minant of an embedding square matrix of size 2 that is  Sponds to an asymmetric discrete energy velocity measure fo

built using a window sliding over signals. In the present pa#«=1 andh=1 whereas it yields a discrete energy acceleration

per, we propose a new extension of these operators and vieasure fok=2 andh=1, accordingly to [2]. The main ad-

define the extended GTKO (EGTKO) as the determinant o¥antage of this GTKO (2) over the TKO (1) lies in its superior

an embedding matrix of sizé x d with d > 2. We discuss localization of changes of instantaneous amplitudes.

different structures of such an embedding matrix. The GTKO (2) can be viewed as the determinant of a
The detection of instantaneous amplitude changes can Isgluare matrix of size x 2 built by embedding the observed

achieved by applying a threshold to the proposed EGTKO. Tsignal in its time delayed coordinates [7]

theoretically determine the optimal threshold that alldars

the most accurate detection, we present a statistical chara Uln] = det [ © [7] wn +k + Al @3)

terization of the EGTKO based on the determinant theory of x[n—h] x[n+ k|

random matrices. The receiver operating characteris@R . . . ) .

curves obtained at different SNR show that the accuracyeof th! "€ TKO (1) is obtained by settinig=0 andr=1in (3) and it

EGTKO outperforms that of the TKO and GTKO. An applica- aPPears to be the determinant df & 2 Toeplitz matrix [7].

tion to a real biomedical signal is also presented and itiss

the superiority of the proposed EGTKO. In the present paper, we propose an extend generalized

) ~ Teager-Kaiser operator (EGTKO) that we define as the deter-
Index Terms— Teager-Kaiser operator, random matrix minant of an embedding square matrix of a higher gized,
determinant, detection, biomedical signal, electromgpby.  with ¢ > 2. This EGTKO is expected to further improve the
localization of changes of instantaneous amplitudes.
1. INTRODUCTION We discuss various possibilities of the embedding matrix
structure: independent entries, Toeplitz and symmetrie. W
The Teager-Kaiser energy operator (TKO) was defined in [1also focus on the statistical properties of the EGTKO based

for a continuous timeand a signat:(¢) asW (t) = (aagi(t))Q_ on the determinant theory of random matrices. It is worth
, t noting the characterization lack of the TKO (1) and GTKO
(1) 2241, and then for a discrete timeas (2) probability density function (pdf).
The detection of instantaneous amplitude changes of sig-
U[n] = 2*[n] — 2[n — 1] z[n + 1]. (1) nals can then be achieved by comparing the proposed EGTKO

to an optimal threshold. To the best of our knowledge, we

This nonlinear operator was able to localize instantaneoygeoretically derive for the first time the expression of dipe
amplitude changes of signals and it significantly improVe t iz threshold that allows for the most accurate detegtion
signal to noise ratios (SNR) [3, 4, 5, 6]. The TKO usefulnessynatever thel value.

has been proven in many research fields, including biomedica 14 gemonstrate the accuracy superiority of the proposed

This work is supported by the French-Taiwanese ANR - TecSajeét EG_TKO over the TKO and_ GTKO, _receiver operating charac-
2014-2016. teristic (ROC) curves obtained at different SNR are presint
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An application to a real biomedical signal is also provided. 3.1. EGTKO with d=2

The paper is organized as follows. Section 2 presentEasic statistics of TKO (1) and GTKO (2) were addressed in

the proposed EGTKO whereas Section 3 details its statistic L 7 9]. However, i? must be pointe_d out t_hat °F"V mean "?‘T‘d
feautres. Section 3 is dedicated to the theoretical dévivaf ~ V3''ance were obtained when the input signal is an additive
the optimal threshold for detection purposes. The fedsibil zero-mean white Gaussian noise and/ or sum of sinusoids. We

and interest of the EGTKO compared to TKO and GTKO aréwgre aim at filling t_he_lack of distribution law of EGTKO (7)
illustrated in Section 5 using ROC curves and a real biomediith ¢=2 and,afortiori, that of TKO and GTKO.
cal signal. Finally, Section 6 draws the conclusions andkwor

in progress. 3.1.1. Independent random normal matrix entries d=2

Let us suppose that the matrix entries (8], z[n+s], x[n—
m] andz[n + s — m] are mutually independent random vari-
ables §£0, m#0, s#m ands#—m), each normally dis-
Hibuted, with meansug, pis, ft, and ps—,,, and a common
variances?. For the sake of notation simplicity, we denote
by ¥ the random determinaft=¥, ,,, [n].

The assessment of the pdf and cumulants of the determi-
nant of such a matrix is an old mathematical subject [10, 11].
where(.)T denotes the transpose operator anis a time lag.  When all the meang; vanish the exact law o¥ is calculated

2. PROPOSED EGTKO

Let us consider a 1-D signaln| wheren = 0,1,...,N — 1
andN is the sample number. This signal can be transforme
into vectorsx,, of lengthd by embedding itin its time delayed
coordinates

Xp = [a:[n],Jr[n*m],a:[anm],.A.,;v[nf(dfl)m]]T, 4)

An embedding matrixX,, of sized x d is built as to be the Laplace distribution [10, 11]
1
X, = I:X’I’L7X77,+S7 e ,Xn+(d—1)s] , 5) pu(¥) = 157 P (—%) for 4 €R. (8)
wheres # 0 is a time lag. When the meang; are not zero, the distribution oF is

The matrix entries ar@l — 1)(s + m) + 1 samples taken skewed, and is not expressible in a simple closed form. How-
using a sliding windowjn — (d — 1) m,n + (d — 1) s] over  ever, a straightforward inversion of the characteristitcction
the considered signal. The explicit expressioXofis of U with o2 =1 is possible and yields the exact pdff{11].
This characteristic function and its associated pdf are

xz[n] xz[n+s] ... zn+4(d—1)s]
x[n— c[n—m +s .. xzn—m4(d—1)s ; —A2242iAz
x| DT o) = B[] = g e (SREER),
: : Lo pu(v) = 5 [7 eV pu(2)dz,
zn —(d—=1)m] zn—(d—1)m +s] ... m[nf(dfl)(mf(gg]

We then define the EGTKO, denoted By, . [n] as respectively, wherg?=—1, E[] is the expectation and

Vam.sln] = det (Xn) . @) A= @B +pd e, 0< A< oo,
The TKO (1) can be viewed as a special case of (7) by fixing A = piofts—m — Hstm, —% <AL %
d=2 ands=m=1 in (7). Additionally, the GTKO (2) turns _ (10
out to be also a special case of (7) when selectiag® and The cumulants off can be obtained by expanding the loga-
k=s — m andh=m. rithm of O (Z) [11]

This definition of the EGTKO (7) proposed is also moti-
vated by the fact that the determinant is an algebraic operat3.1.2. Random Gaussian Toeplitz matrix entries d = 2
that helps quantify the notion of near singularity. Moregpve ] ] ]
the determinant is an alternating-multilinear form of tha-m L€t Us assume=m, the matrix (5) is then & x 2 Toeplitz

trix entries that verifies the property of similarity invance ~Matrix. To our knowledge, we derive for the first time the
(basis independent) [8]. expression of the determinant pdf of such a matrix. To that

end, we first determine the expression of the characteristic
function under the assumption of mutually independent en-
triesz[n], z[n + s] andxz[n — m] (s#0, m#0 ands#—m),

The statistical properties of the EGTKO (7) are dependen‘?ach normally distributed Wit,h alc.ommon variamce=1 and
not only on the structure of the embedding square magjx ~ MeaNio, s andyum, respectively:
(Toeplitz, symmetric, independent entries,...) but alsdhe

3. STATISTICAL PROPERTIES OF EGTKO

(ME-HLE,, )zz+2jusum z

assumptions made on the distribution law of the matrix estri b . a2 . 2(1527)
(Gaussian, exponential, uniform,...). Due to lack of space pu(z) =E [e ] = (1—2j2)% VT2
only some scenarios are presented. (112)
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plex expressions of the asymptotic behaviours of the déterm
nant pdfs are provided for all > 3 whereas exact pdfs are
only derived up tal = 4:

po () = \/%7_ Jo rexp (—% — 7‘;’) dr  with ¥ = W3 ., s[n]

pe(¥) = LK2(2v) With ¥ = Wy, [n].

(13)
The related exact moments of the determinant (7) are also
© peteiminant * provided in [10]. Both pdfs (13) can be easily generalized fo
a common variance not necessarily unit.

Flg 1. EGTKO pdf for normally distributed random entries of a In [13], it is shown the |og_n0rma|ity of the determinant
2 x 2 Toeplitz matrixX,. The common variance;, =1 and means  of 5 standard real Gaussian random matrix whose entries are

{Ho, ps, i } @re equal tq0, 0, 0 (left column) and(1, 2,3} (right 4 \whend tends towardwo. More precisely, the Lyapunov’s
column). Theoretical pdfs (11) (red curve) are superimposed to thgentral limit theorem holds fdbg (|¥|):
normalized histograms. & ’

Probabiity

log (|¥) — 5 log ((d —1)!) weakly converge

The EGTKO pdf is then obtained by the Fourier transform log(d)
of (11). Figure 1 displays such a pdf. We also derive the
cumulants ofl by expanding the logarithm @fy (2) (11)
con = (2h)! (£oim 4 L 4 92h=2 (L 4 0,2) 12
eongr = (2h+ 1)) (2% (M(z) 4 2h1+1) _ usum) _ We determine the theoretical optimal thr.esholq to apply on
the EGTKO output for an accurate detection of instantaneous
In particular the mean, variance, skewness and kurtosls of amplitude changes. The idea is to monitor the threshold sele
are given byl +2 —fug i, Ap24-p2 412, +3, M tion by only setting the probabilities of false alafity and/or
(ug+ri+ui+3)2 good detectioriPyq of events of interest (occurring changes).
respectively. To that end, when only noise is present we define for any
£ > 0 the false alarm probability as

N(0,1). (14)

4. OPTIMAL THRESHOLD FOR DETECTION

12(16p3+p2+p2,+3)

and (4u3+p2+p2,+3)2

We note that the pdf o¥ ,, s[n] shown in Fig.1 can be _ _
easily generalized for a common varianeg not necessar-  Ltac = P [Vam.s[n]| > & X, entries (5) are noise samples
ily equal to one, provided that meafigo, 15, i } are equal _ o o (15)
to {0,0,0}. This generalization can be viewed as a scaledtis the probability that specific noise samples lead an EGTK

probability -4 py ( ). We also note that for this latter case, OUtPUt above a threshofdand can be misinterpreted as signall

we retrieve a classical result: the EGTKO mean is exactly th amples. Similarly, v_vhen the signal of |n'terest and noise ar
oth present, we define for agy> 0 detection probability as

variance of the Gaussian procésgl, ,, s[n]] = o2,

Pga=P[ [V 4,m,s[n]| > & X, entries (5) are noisy signal samples
3.1.3. Random Gaussian symmetric matrix entries d=2 (16)
. ) . It is the probability that signal samples corrupted by noise
Let us assume=—m, the matrix (5) is then @x 2 symmetric  |ead an EGTKO output above a threshgld Therefore, the

matrix, called a Hankel matrix [12]. To our knowledge, we gt threshold is the one that minimizes th#,, and maxi-
derive the determinant pdf of such a matrix for the first time.izesp ¢

So, we first derive the expression of the characteristictfanc
by substituting—z to z and jis_, t0 p., in (11), under the
assumption of mutually independent entrigs), z[n+ s] and
xz[n —m + s] (s#0, m#0 ands#m), each being normally
distributed with a common variane€ =1 and meang, 1.,
and s, respectively. The pdf is then obtained by Fourier
transform of this characteristic function.

gd, -

Let us denote by«“qjdl_m o] the inverse of the cumulative
distribution related to the (scaled) pdf of the EGTKO (7)t Le
us also assume both the noise and free noise signal samples
to be zero-mean Gaussian with a standard deviatiprand
os, respectively. The theoretical expressions of the optimal
thresholds (15) and (16) that we derive are given by

€ = ouFy, (1 - Pf%) ; a7
3.2. EGTKO with d> 3 - P
_ 2 2\ 4 -1 _ 1%
There are very few analytic expressions of the exact pdf of ¢ = et (l 2 > ' o

random determinants with > 3 and one can instead find nqer the assumption of Section 3.1.1 and using (8), (15)
asymptotic expressions [10]. The case of independent ideny, 4 (16), (17) and (18) write

tically distributed (i.i.d) normal matrix elements withroe ¢ ¢
mean and unit common variance is considered in [10]. Com-  Pra; = exp <—ﬁ> andPgqg, = exp <—m> (19)

w
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This leads the following relationship, wiNR = 101og;, <;’72>
v Elog = 7% log ((d— 1)) +v2 log(d erfinv (1 - ]P)fa£> +
1 dy,
log (Pr,) = log (Pgdg) (1 n 1031*”5‘) . (20) 8 (o)
bog = —slog((d—1))+v2 log(d> erfinv (1 - IP’ng) +

Figure 2.a shows the receiver operating characteristicQRO log ((afﬂ +02) %> ,
curves related to (20) for different SNR values. 1)

where erfiny.) is the inverse error function [14].
e e -/ JUEE S B 5. APPLICATION TO BIOMEDICAL SIGNALS
B —12 gg 3o s We here apply the proposed EGTKO to a surface electromyo-
fo” Lsw| Ee T o graphy (SEMG) signal acquired at a sampling rate 1999 Hz
&0 @ & o (®) from the right soleus of a healthy subject during gait. The

I P 18 EGTKO is built with an embedding matrix sizk-2, 3, 4 and
Provepily effese siarm Provepily effese siarm 33 and withs=1 andm=—d for all cases. The desired detec-
B o P ————— e tion probability is set equal to 90%. As one can notice from

goo” g U T S R S S ey Fig.3, the best localization of on-off timing of the SEMG sig
M IS Sooe—t" nal is obtained using=33.
To o g —15dB g“ :'/ — 15 dB
=i ""lOddB it --10dB %
8% ---5dB 8 ---5dB
i © o @ e

% 0 JRRELC DL OO A

° uu‘;‘robabuility of fa‘isl; alarmDZ o ° uué‘robabﬂ\l;ty affa‘is’; alarmeZ o i \‘ ‘

™ .

1
Fig. 2. ROC curves of EGTKO detector at different SNR values, : ‘ ‘Ill‘llul }I‘I‘. Hllllll ‘
5, 10 and 15 dB, obtained under the assumptions assumed in: (% n m w | I I w
Section 3.1.1 withi=—m=2 ands=1i.e. GTKO withk=3 and |
h=—2, (b) Section 3.1.2 withi=2 ands=m=1ie TKO, (c) $ H | | ‘l |
Section 3.2 withd=—m=3 ands=1 and finally (d) withd=—m=4 ° o5 y s . > 5 35 - v
ands=1. Time (sec)

Fig. 3. Application to the localization of instantaneous amplitude

. . . changes of a SEMG signal=2, 3, 4 and 33 from top to bottom and
Under the assumption of Section 3.1.2 or Section 3.1.3 QRith s=1 andm=—d for all cases. The desired detection probability
Section 3.2, analytic expressions of false alarm and goed dg; g¢¢ equal to 0.9.

tection probabilities are difficult to explicit. Howeveinse
the pdf can be numerically evaluated from (11) or (13), ROC
curves can be numerically deduced from (17) as shown in 6. CONCLUSIONS
Fig.2b, c and d. Actually, Fig.2a corresponds to the GTKO
(2) whereas Fig.2b corresponds to the TKO (1). As, one cafye propose a new generalization of Teager-Kaiser operator,
notice from both figures, the detection probability is regtlic named EGTKO, that helps improve the SNR and contributes
using TKO compared to that of GTKO for a given false alarmto a higher accuracy of localization of signal changes. The
probability. This result supports the use of the first preos proposed EGTKO is defined as the determinant of an embed-
of the GTKO [2] instead of the conventional TKO [1]. ding matrix built from the signal itself. The localizatios-a
Additionally, as one can notice from Fig.2, the EGTKO curacy of the proposed EGTKO is dependent on the selection
defined withd=4 provides the best ROC curves compared toof the matrix sized > 2, the matrix structure (independent
the EGTKO defined withi=3 andd=2. Once again, this entries, Toeplitz or symmetric) tuned by parameterand
result lends support for the use of the proposed EGTKO (73, and finally the threshold theoretically selected in such a
instead of the GTKO (2). Indeed, increasing the matrix size oway as to maximize the detection probability while minimiz-
X, (5) seems to reduce the false alarm probability while théng the false alarm. In future work, we aim at comparing the
rate of good detection is increased. A better discrimimatio EGTKO to existing tools of biomedical signal segmentation.
between only noise and the signal presence is expected.
Under the assumption of Section 3.2 and whiers oo
(in statistic practice forl > 33), it would be preferable to Acknowledgment
derive the optimal threshold for the logarithm of the EGTKO The present work is supported by the French National Agency for research ANR-12-
output using (14) Tecs-0020 and embedded in the project ECOTECH (www.echotechsan.org).
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