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Abstract—The penalty term plays an important role in model
order selection rules. The Exponentially Embedded Families
(EEF) is consistent and effective in model order selection.
In this paper we show that the EEF penalty term can be
viewed as estimated mutual information (MI) between unknown
parameters and received data from Bayesian viewpoints. The
finding is a result of an important relationship between Kullback-
Leibler Divergence (KLD), signal-to-noise ratio (SNR) and MI in
estimation/detection of random signals, which is also introduced.

I. INTRODUCTION

Model order selection is a fundamental problem in sig-
nal processing because observed data in practice usually is
composed of an unknown number of signal components. For
example, one may need to determine the number of sources in
array signal processing [1]. Overestimating the order actually
fits the noise in the data; underestimating the order on the
other hand fails to describe the data precisely [1].

Model order selection problem, as a multiple hypotheses
testing problem, lacks an optimal solution [11]. The traditional
generalized likelihood ratio test (GLRT) tends to overestimate
the order [7]. As a result, a typical model order selection algo-
rithm introduces a penalty term to form a decision rule. Several
popular algorithms are Akaike’s information criterion (AIC)
[2], the minimum description length (MDL) [3], Bayesian
information criterion (BIC) [4] and maximum a posteriori
(MAP) [11]. The reference [5] provides a review in this regard.

In addition to the aforementioned rules, EEF has been
introduced in [8] as an alternative. It embeds two PDFs into a
family of PDFs that are indexed by one or more parameters,
and the new embedded family inherits many mathematical
and optimality properties of the exponential family. It proves
effective in model order selection and even superior under
certain conditions. It has been shown to be consistent, i.e.,
as the data length N → ∞, the probability of selecting the
correct model goes to one [1]. The penalty term plays a central
role in the EEF model order selection algorithm. In this paper
we show that the EEF penalty term is actually the estimated
mutual information between the unknown parameters and
the received data. This hopefully can shed further light to
understanding in choosing optimal penalty term for model
order selection. We limit the discussion in the context of linear
normal model. A more general discussion will be our future
work.

The paper is organized as follows. In Section II we introduce
an useful relationship between KLD, SNR and MI, which
holds in general in estimation/detection of random signals. In
Section III a brief introduction is given to EEF. In Section IV
we discuss the EEF penalty term with an illustrative example.
We then extend the discussion to the linear model in Section
V. Finally, some conclusions are drawn in Section VI.

II. AN IMPORTANT RELATIONSHIP AMONG KLD, SNR AND
MI

In signal processing, we often encounter problems of es-
timation/detection of random signals. Suppose we want to
decide between the following hypotheses

H0 : x = w

H1 : x = t + w

where w is noise and t is a random signal. Denote p1(x) and
p0(x) as the probability density function (PDF) of the received
data x under H1 and H0 respectively, and π(t) as the prior
PDF of t. An interesting and useful relationship is [6]

D(p1(x)||p0(x)) = Et[D(p1(x|t)||p0(x))]− I(x; t), (1)

where D(p1(x)||p0(x)) is KLD, Et(·) denotes taking expec-
tation according to t, p1(x|t) is the conditional PDF of x
conditioned on t under H1 and I(x; t) is the MI of t and x
under H1. A related result has been used to compute MI in
order to obtain the channel capacity per unit cost [10]. The
derivation of (1) is straightforward

ln
p1(x)

p0(x)
= ln

p1(x|t)
p0(x)

− ln
p1(x|t)
p1(x)

= ln
p1(x|t)
p0(x)

− ln
p1(x, t)

p1(x)π(t)

and taking the expected value with respect to p1(x, t) produces

Ex,t

[
ln
p1(x)

p0(x)

]
= EtEx|t

[
ln
p1(x|t)
p0(x)

]
−Ex,t

[
ln

p1(x, t)

p1(x)π(t)

]
(2)

to yield (1). Also, p1(x) can be written as an averaged
conditional PDF by averaging p1(x|t) over t, as

p1(x) =

∫
t

p(x, t)dt =

∫
t

p1(x|t)p(t)dt (3)

Thus the term D(p1(x)||p0(x)) is the KLD of the averaged
conditional PDF p1(x) from the PDF p0(x).

4149978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Furthermore the MI I
(
x; t
)

is also an averaged KLD
obtained by averaging KLD of the conditional PDF p1(x|t)
from the unconditional PDF p1(x), D(p1(x|t)||p1(x)), over
all possible signals t

I(x; t) =

∫
t

∫
x

p1(x, t) ln
p1(x, t)

p1(x)p(t)
dxdt

=

∫
t

∫
x

p(t)p1(x|t) ln
p1(x|t)
p1(x)

dxdt

=

∫
t

p(t)D(p1(x|t)||p1(x))dt (4)

Therefore, all three terms of the decomposition (1) can be
interpreted respectively as a special distance measurement in
the KLD sense. Alternatively, we can write the relationship as
[6]

D(p1(x)||p0(x))︸ ︷︷ ︸
KLD

= Et[D(p1(x|t)||p0(x))]︸ ︷︷ ︸
SNR

− I(x; t)︸ ︷︷ ︸
MI

. (5)

A simple example is next given to illustrate this important
relationship. Assume t,w are both independent N×1 random
vectors and have distributions as t ∼ N(0, σ2

t I) and w ∼
N(0, σ2I) respectively. Then we have

x ∼ N
(
0, σ2I

)
under H0

x ∼ N
(
0, (σ2 + σ2

t )I
)

under H1

The KLD term is

D(p1(x)||p0(x)) =
1

2
ln

|σ2I|
|(σ2 + σ2

t )I|

+
1

2
tr
[
(σ2 + σ2

t )I(σ2I)−1 − I
]

=
N

2

σ2
t

σ2
− N

2
ln

(
1 +

σ2
t

σ2

)
. (6)

Next, for a given t, the conditional PDF p1(x|t) is a Gaussian
distribution with mean t and variance σ2I, so

D(p1(x|t)||p0(x)) =
1

2

tT t

σ2
.

Thus, we have

Et[D(p1(x|t)||p0(x))] =

∫
t

p(t)
1

2

tT t

σ2
dt

=
N

2

σ2
t

σ2

which is indeed a measure of SNR. Lastly, it is easy to show
that

I(x; t) =
N

2
ln

(
1 +

σ2
t

σ2

)
.

Clearly, (5) applies to this simple example. This relationship
(5) provides many insights into various problems. For instance,
it suggests that MI measures the loss in detection performance
between a matched filter, which is based on t known, and an
estimator-correlator, which is based on an average t [6]. In this
paper, however, we focus on using the relationship to justify
the meaning of EEF penalty term. This hopefully will further
the understanding of the problem of discrimination between
normal linear models in [12].

III. INTRODUCTION OF EEF

Assume that we have two distinct PDFs p1(x) and p0(x),
and they model the data x = [x0 x1 · · · xN−1]T under
a general alternative model hypothesis H1 and a reference
hypothesis H0. The EEF, denoted as p(x, η), is an exponential
embedded PDF parameterized by an embedding parameter η,
which takes on values 0 ≤ η ≤ 1.

p(x; η) =
pη1(x)p1−η

0 (x)∫
pη1(x)p1−η

0 (x)dx
. (7)

Equivalently, the EEF is expressed as [8]

p(x; η) = exp [ηT (x)−K0(η) + ln p0(x)]

where T (x) = ln p1(x)
p0(x) , K0(η) = lnE0(exp(ηT (x))), and

E0(·) denotes expectation under H0. If the PDF p1(x) =
p(x;θ) has unknown parameters θ, a p× 1 vector and under
H0, θ = θ0, then upon taking a reduced form and using an
asymptotic approximation for the PDF, the EEF reduces to [8]

EEF = max
η

[η ln
1

pT ′(T ′(x);θ0)
−K0(η)]

where T ′(x) = ln p(x;θ̂)
p(x;θ0) and θ̂ is the maximum likelihood

estimate of the θ.

IV. EEF PENALTY TERM-DC LEVEL IN WGN

In this section we start the discussion of the penalty term
of the EEF with a familiar example x = A1 + w, where A
is assumed to be an unknown scalar, w is white Gaussian
noise (WGN) with covariance σ2I, and 1 = [1 1 · · · 1]T is
a N × 1 vector. The EEF, termed EEFd, where the subscript
“d” indicates that A is assumed deterministic, is given in [8]
as

EEFd = max
η

(
η
Nx̄2

2σ2
+

1

2
ln(1− η)

)
,

where x̄ = 1
N

∑N−1
n=0 xn. With η̂ = 1− σ2

Nx̄2 (η̂ = 0 if Nx̄2 <
σ2), we have for 0 < η̂ < 1

EEFd =
1

2

(
Nx̄2

σ2
− 1

)
− 1

2
ln

(
Nx̄2

σ2

)
.

To verify the relationship between KLD, SNR and MI, we
now assume the DC level A is a zero-mean Gaussian random
variable with variance k σ

2

N instead, and let k → ∞. That is,
we assign a vague proper prior to the unknown parameter in
an attempt to assigning a non-informative prior. Then, we have

H0 : x ∼ N(0, σ2I)

H1 : x ∼ N(0, σ2I + k
σ2

N
11T ),

and the resultant EEF PDF pη(x) can be shown to be

pη(x) = N(0, σ2I +
η

1− η
σ2

N
11T ). (8)

Proof: pη(x) is an exponential embedding of two zero
mean normal distributions PDFs with variance matrices as
C0 = σ2I and C1 = σ2I + k σ

2

N 11T respectively. According
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to (7), the resultant EEF pη(x) is also a zero mean normal
distribution with variance matrix C(η), depending on η, as
[8]

C(η) =
(
ηC−1

1 + (1− η)C−1
0

)−1

=

(
η[σ2I + k

σ2

N
11T ]−1 +

1− η
σ2

I

)−1

=

(
η

σ2

[
I− k

k + 1

1

N
11T

]
+

1− η
σ2

I

)−1

=

(
1

σ2

[
I− ηk

k + 1

1

N
11T

])−1

= σ2

(
I−

− ηk
k+1

−ηk
k+1 + 1

1

N
11T

)
k→∞→ σ2I +

η

1− η
σ2

N
11T

We denote Cη = σ2I + η
1−η

σ2

N 11T . Alternatively, we
consider to assign a prior to Aη ,

π(Aη) = N(0,
η

1− η
σ2

N
)

for the following model

xη = Aη1 + w

Then we have pη(x) = p(xη); that is, the two are equivalent
PDFs. This shows that EEF method can use vague proper
prior and can find an equivalent PDF with a prior on unknown
parameter related to the embedding parameter η. This will be
proved rigorously in an extended paper. On the other hand,
it is generally a bad idea for many other Bayesian model
selection methods to use vague proper prior[13].

Then, the EEF for this case, termed EEFr, where the
subscript “r” indicates that A is considered to be the outcome
of a random variable, is KLD D(pη̂(x)||p0(x)). To compute
it, we first should find the η̂. It is also the value of η that
maximizes the following likelihood ratio [8].

Lη(x) = 2 ln
pη(x)

p0(x)

= 2 ln

1√
(2π)N |Cη|

exp(− 1
2x

TC−1
η x)

1√
(2π)N |σ2I|

exp(− 1
2x

T (σ2I)
−1

x)

= xT
[
(σ2I)−1 −C−1

η

]
x− ln

|σ2I + η
1−η

σ2

N 11T |
|σ2I|

=
η

Nσ2
xT11Tx− ln

∣∣∣∣I +
η

1− η
1

N
11T

∣∣∣∣
=

η

Nσ2
xT11Tx− ln

(
1 +

η

1− η

)
(9)

Then the η̂ is the value of η for which the derivative is equal
to zero and hence, solves the equation

∂Lη(x)

∂η
=

1

Nσ2
xT11Tx− 1

1− η
(10)

Incorporating the definition of the embedding parameter 0 ≤
η ≤ 1, we have

η̂ =

{
0 if xT11Tx < Nσ2

xT 11Tx−Nσ2

xT 11Tx
otherwise

When η̂ = 0, the corresponding EEFr penalty term is zero.
We focus on the third case, 0 < η̂ < 1, in the rest of the paper,
which is of main interest. The resulting EEFr is

EEFr = D(pη̂||p0)

=
1

2
tr
[
η̂2σ2

A

σ2
11T

]
− 1

2
ln
|η̂2σ2

A11
T + σ2I|

|σ2I|

=
1

2

xT11Tx

Nσ2
− 1

2
− 1

2
ln

(
xT11Tx

Nσ2

)
=

1

2

(
Nx̄2

σ2
− 1

)
− 1

2
ln

(
Nx̄2

σ2

)
. (11)

This shows that EEFr = EEFd, that is, the resulting EEFs
for the two different problems of a deterministic A and a
random A are the same. Note that when taking expectation
according to pη̂(x), η̂ is considered as a constant parameter,
not a function of x.

It is easy to prove that the penalty term of EEFr,
1
2 ln

(
xT 11Tx
Nσ2

)
is indeed I(xη̂;Aη̂), the mutual information,

since we have

I(xη̂;Aη̂) = EAη̂D(p(xη̂|Aη̂)||p(xη̂))

=
1

2
ln
(xT11Tx

Nσ2

)
Strictly speaking, it is an estimated mutual information in that
we only have the estimated PDF pη̂(x), or equivalently p(xη̂),
instead of the true PDF.

This is a direct result of the equivalency of pη(x) and p(xη)
and the decomposition (5) when applied under the estimated
PDF pη̂(x) since the reduced EEFr is an asymptotic KLD
D(pη̂||p0). A modified version of decomposition (5) can be
expressed as follows

EEFr = ŜNR− M̂I

where ŜNR, M̂I are the estimated SNR and estimated MI,
respectively.

V. EEF PENALTY TERM OF LINEAR MODEL

We now generalize the previous results to show that the
EEF penalty term of model order selection for the linear
model is the estimated MI. The linear model is an important
one in practice and so a detailed analysis of this result is
warranted. The linear model is x = Hθ +w where H is
N × p, θ is a p × 1 vector and w ∼ N(0, σ2I). Different
models have different orders p and observation matrices H.
The model order selection problem is to decide the value of
p to best model the data. It can be shown that assuming θ
is a deterministic unknown parameter yields the same EEF as
assuming it is a random vector with a given prior PDF [8],[9].
We assume the latter by assigning to the unknown parameter
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θ the prior PDF N(0, ξ
2

p σ
2(HTH)−1). When ξ2 is assumed

unknown, the EEF is proved to be equivalent to the model
structure determination (MSD) [9]. If we reparameterize ξ2

by letting
ξ2

p
=

η

1− η
,

then a one-to-one transformation from ξ2 to η (0 < η < 1)
is effected and finding η̂ is equivalent to finding ξ̂2. With this
setup, we have

x ∼ N(0, σ2I +
ξ2

p
σ2PH) under pη(x)

where PH = H(HTH)−1HT . It is shown in [9] that the EEF
for model Mp, i.e., with p unknown parameters, is

EEFr(p) = max
ξ2

p

[
1

2σ2

ξ2

p

1 + ξ2

p

xTPHx− p

2
ln(1 +

ξ2

p
)

]
.

The estimate ξ̂2

p , which maximizes EEFr(p) is

ξ̂2

p
=

xTPHx

pσ2
− 1

and hence, the maximized EEF is

EEFr(p) =
1

2

(
xTPHx

σ2
− p
)
− p

2
ln

xTPHx
σ2

p
. (12)

Since xTPHx
σ2 obeys a χ2

p distribution under the null hypothesis

[7],[8], the term 1
2

(
xTPHx
σ2 − p

)
subtracts out the mean p

under H0, thereby producing ŜNR. The term p
2 ln

xTPHx

σ2

p is
the estimated M̂I as shown next. First, we have the following

D(pη(x|θ)||pη(x))

=
1

2
ln
|σ2I + ξ2

p σ
2PH|

|σ2I|
+

1

2
tr
(
σ2(σ2I +

ξ2

p
σ2PH)−1 − I

)
+

1

2
(Hθ)T (σ2I +

ξ2

p
σ2PH)−1Hθ

=
1

2
ln
|σ2I + ξ2

p σ
2PH|

|σ2I|
+

1

2
tr

− ξ2

p

ξ2

p + 1
PH


+

1

2σ2
(Hθ)T (I−

ξ2

p

ξ2

p + 1
PH)Hθ .

Then the computation of the estimated MI between x and θ
follows.

Iη̂(x;θ) = EθD(pη̂(x|θ)||pη̂(x))

=
1

2
ln
|σ2I + ξ̂2

p σ
2PH|

|σ2I|
+

1

2
tr

− ξ̂2

p

ξ̂2

p + 1
PH


+ Eθ

[
1

2σ2

1
ξ̂2

p + 1
(Hθ)THθ

]

=
1

2
ln
|σ2I + ξ̂2

p σ
2PH|

|σ2I|
=
p

2
ln

xTPHx
σ2

p
(13)

where we have applied

Eθ

[
1

2σ2

1
ξ̂2

p + 1
(Hθ)THθ

]
=

1

2σ2

1
ξ̂2

p + 1
tr(
ξ̂2

p
σ2PH),

(I+ ξ̂2

p PH)−1 = I−
ξ̂2

p

ξ̂2

p +1
PH and

∣∣I+ ξ̂2

p PH

∣∣ =
(

1 + ξ̂2

p

)p
.

Thus, (13) proves that the EEF penalty term for the linear
model in (12) is indeed the estimated MI. This is intuitively
appealing in the sense that the model order selection rule
should not take into account the information contributed by the
distributional knowledge of the unknown parameters, which
increases with its dimension [12]. As a special case, when
H = 1 and θ = A then this example reduces to the DC level
in WGN example for which p = 1. Thus, the estimated MI

term in (13) reduces to 1
2 ln

(
xT 11T

Nσ2

)
, which is the estimated

MI in (11).

VI. CONCLUSIONS

To summarize, we show that EEF method can employ
vague proper priors in model order selection. The resultant
penalty term can be viewed as an estimated mutual information
between model unknown parameters and the received data
from Bayesian viewpoints. Intuitively, the MI measures how
much information of the data is contributed by the parameter
θ. The EEF model order selection rule therefore subtracts
it out so that the comparison among different models tends
to be more fair. Future work will discuss the relationship of
the estimated mutual information and other concepts in model
selection such as model complexity.
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