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ABSTRACT

This paper addresses a polyphase1 structure of spectral graph
wavelets and filter banks. We consider two-channel critically sam-
pled graph filter banks. In classical signal processing, polyphase
structure of filter banks is very useful since downsampler (upsam-
pler) can be placed before analysis filtering (after synthesis filtering).
We theoretically derive that a similar structure is also possible for
spectral graph filter banks. The structure can be used for any two-
channel critically sampled spectral graph filter banks as long as an
underlying graph is bipartite.

Index Terms— Graph signal processing, spectral graph wavelets,
polyphase structure, graph filter banks

1. INTRODUCTION

Graph signal processing is becoming popular in the community of
signal and information processing [1, 2]. It has many promising ap-
plications by analyzing signals on complex networks, e.g., sensor,
social, neuronal, and transportation networks. Recent progress in
this field is to reinterpret classical signal processing tools into graph
spectral domain with spectral graph theory. They include wavelets
and filter banks [3–9], sampling theory [10–12], uncertainty prin-
ciple [13, 14], and robust principal component analysis [15, 16] on
graphs. Many applications have been found so far; for example, de-
noising and interpolation [17–19], sensor position selection [20,21],
and multilinear discriminant analysis for brain–computer interface
[22].

In this paper, we study an efficient structure of wavelets and fil-
ter banks on graphs. We consider two-channel critically sampled
spectral graph filter banks. Since naive filtering with eigendecom-
position is usually not recommended due to its computational cost,
we often use polynomial filter kernels. There have been mainly two
approaches to design spectral graph filter banks with polynomial ker-
nels. One is spectral factorization [5, 6], and the other is polynomial
approximation of a spectral response [3, 4, 9]. Due to spectral fold-
ing phenomenon, which is a counterpart of aliasing effect in classi-
cal signal processing, critically sampled spectral graph filter banks
require a careful design. There are two well-known wavelets in such
a class. One is the orthogonal solution [4] and the other is biorthog-
onal [5]. Though they can be applied to signals on arbitrary graphs,
the original graph should be divided into some bipartite subgraphs

This work is supported in part by JSPS KAKENHI Grant Number
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1Indeed “phase” has not been strictly defined in the context of graph sig-
nal processing. We just use this word (and also, “polyphase”) as a counterpart
of classical signal processing.

Fig. 1. Simple bipartite graphs. Black and white nodes represent
two disjoint sets L and H , respectively. (Top left) ring graph. (Top
right) star graph. (Bottom) path graph.

since the transform has to be applied to the signals on a bipartite
graph to guarantee the perfect reconstruction.

Like classical signal processing, filtered graph signals are down-
sampled to obtain transformed coefficients in graph spectral domain.
In the synthesis side, they are upsampled followed by filtering to re-
construct the signal. It is so-called direct form. We know that, in
the classical case, we can obtain the same results by using polyphase
structure [23–25]. It can switch the places of downsampler and up-
sampler: Downsampling then filtering in the analysis bank, and fil-
tering then upsampling in the synthesis bank. Its purpose is that we
can work at a fast rate in mutirate signal processing. We can sepa-
rate even and odd indexed-signals and perform filtering to them in
parallel.

Such polyphase structure will also be useful in graph signal pro-
cessing. Since we often have to treat signals on large graphs, down-
sampling before filtering will be highly beneficial. However, there
are few approaches so far. Noble identities in graph signal process-
ing have been partially shown in [26, 27], which will be useful for
the polyphase structure of graph signal processing. Unfortunately,
the condition is restricted: In the two-channel case, the number of
transformed coefficients in the lowpass and highpass channels must
be the same, i.e., each channel has N/2 coefficients where N is the
length of the graph signal2. It is generally satisfied in the classi-
cal case since the downsampling in classical signal processing takes
every other sample. However, it is not the case for graph signal
processing: The number of coefficients in each channel heavily de-
pends on underlying graphs. For example, ring and path graphs will
be similar to the classical case, whereas star graph only has one coef-
ficients for the lowpass channel and the remaining (N − 1) samples
are for the highpass channel (and vice versa). Illustrative examples
are shown in Fig. 1. It could be solved by using a similarity trans-

2For the general M -channel case, each channel has N/M coefficients
[26, 27].
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form matrix [27]. However, it changes graph Fourier basis and thus,
it has to be carefully designed. The similarity transformation also
adds extra computation complexity.

In this paper, we consider an efficient polyphase structure of
two-channel critically sampled spectral graph wavelets and filter
banks. We systematically follow the classical approach, and re-
laxed the condition on the number of transformed coefficients in
each channel. Arbitrary spectral graph filters can use the proposed
polyphase structure as long as the graph G is connected. Addition-
ally, the perfect reconstruction condition can be represented very
easily.

The remaining of this paper is organized as follows. Prelimi-
naries are shown in Section 2, which includes graph signal process-
ing tools used in this paper and polyphase structure in z-domain for
classical signal processing. Section 3 is the main contribution in this
paper: Polyphase structure in graph spectral domain is introduced
with proofs. Finally, this paper is concluded in Section 4.

2. PRELIMINARIES

2.1. Basics of Graph Signal Processing

A graph G is represented as G = (V, E), where V and E denote
sets of nodes and edges, respectively. The number of nodes is N =
|V|, unless otherwise specified. The (m,n)-th element of the ad-
jacency matrix A is wmn if m and n are connected, and 0 other-
wise, where wmn denotes the weight of the edge between m and
n. The degree matrix D is a diagonal matrix, and its mth diago-
nal element is dmm =

∑
n wmn. We consider an undirected graph

in this paper. The normalized adjacency matrix is also defined as
A := D−1/2AD−1/2. Various variation operators, such as graph
Laplacian L := D − A, are often considered instead of the adja-
cency matrix. We use the normalized adjacency matrix since it is the
simplest form to realize our polyphase structure. Extensions to the
other variation operators are our future work.

The key symbols used here are:

1. f : Graph signal (f ∈ RN ).

2. uλi : ith eigenvector of A.

3. λi: ith eigenvalue of A. (Auλi = λiuλi ), where −1 ≤
λ0 ≤ λ1 ≤ . . . ≤ λN−2 ≤ λN−1 = 1 for connected graphs.
λ0 = −1 only for bipartite graphs.

4. σ(A): Spectrum of the graph, i.e., σ(A) := {λi}i=0,...,N−1.

The eigenvectors U = [uλ0 , . . . ,uλN−1 ] satisfy UU> = IN ,
where ·> is the transpose of a matrix or a vector and IN is the iden-
tity matrix with the size N × N . The graph Fourier transform is
defined as f̄(λi) = 〈uλi ,f〉 =

∑N−1
n=0 uλi(n)f(n) [3]. Let H(λ)

be the spectral kernel of filter H defined on the real line λ ∈ [−1, 1].
The spectral domain filter can be written as

H = H(A) =
∑

λi∈σ(A)

H(λi)
∑
λ=λi

uλu
>
λ . (1)

Spectral domain filtering of graph signals will simply be denoted as
fout = Hfin.

2.2. Two-Channel Critically Sampled Spectral Graph Wavelets

A bipartite graph, whose nodes can be decomposed into two disjoint
sets L and H such that every edge connects a node in L to one in
H , is represented as G = (L,H, E). The downsampling operation is
represented as (↓ JL) and (↓ JH), where (↓ JL) picks up the nodes

Fig. 2. Critically sampled spectral graph filter bank.

in L and (↓ JH) selects ones in H . Conversely, the upsampling
operator makes a signal with length N by inserting zeros. When we
have a downsampled signal fL ∈ R|L| which corresponds to the
signal on the set L,

(↑ JL)fL =

[
fL

0|H|×1

]
. (2)

The critically sampled spectral graph wavelet transforms decom-
pose N input signals into |L| lowpass coefficients and |H| highpass
coefficients, where |L|+ |H| = N . The direct form is illustrated in
Fig. 2. Since any arbitrary graph can be decomposed into K bipar-
tite subgraphs where K = dlog2 Ce and C is the chromatic number
of the graph, spectral graph wavelet transforms for bipartite graphs
can be applied to any non-bipartite graph [4, 28].

The perfect reconstruction condition of the critically sampled
spectral graph wavelet transforms can be expressed as follows [4]:

F0(λ)H0(λ) + F1(λ)H1(λ) = 2, (3)
−F0(λ)H0(2− λ) + F1(λ)H1(2− λ) = 0. (4)

Although the normalized graph Laplacian has been originally con-
sidered in (3) and (4) [4,5], we have the same perfect reconstruction
condition even if we use A as a variation operator since their dif-
ference is only a range of eigenvalues: Those of A is λ ∈ [−1, 1]
instead of [0, 2] of the normalized graph Laplacian. Eigenvectors are
obviously the same.

There are two well-known wavelets: GraphQMF [4], which is an
orthogonal transform and non-compact support, and graphBior [5],
which is a biorthogonal transform and satisfies the perfect recon-
struction and compact support conditions.

2.3. Polyphase Structure in z-Domain

Here we briefly review the polyphase structure of two-channel filter
banks in classical signal processing. When we have an FIR filter
G(z) =

∑
m gmz

−m, where g = [g0, g1, . . .]
> is the impulse re-

sponse of the filter, its type 1 and type 2 polyphase structures are
respectively represented as

G(z) =

{
G0(z2) + z−1G1(z2) Type 1
G1(z2) + z−1G0(z2) Type 2

, (5)

where G0(z) and G1(z) correspond to the even and odd powers of
z in G(z), respectively.

The type 1 polyphase matrix is used for the analysis bank and it
is represented as [25]

H(z) =

[
H00(z) H01(z)
H10(z) H11(z)

]
(6)

where Hi(z) = Hi0(z2) + z−1Hi1(z2) and i = {0, 1} is the filter
index. The type 2 polyphase matrix is also used for the synthesis
bank and defined as

F(z) =

[
F00(z) F10(z)
F01(z) F11(z)

]
. (7)
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(a) Direct form.

(b) Equivalent polyphase structure.

Fig. 3. Two-channel critically sampled filter bank in classical signal
processing.

By using the polyphase structure, the perfect reconstruction condi-
tion can easily be represented as

F(z)H(z) = z−`I, (8)

where ` is some constant. The direct and polyphase forms are illus-
trated in Fig. 3.

3. POLYPHASE STRUCTURE IN GRAPH SPECTRAL
DOMAIN

In this section, we prove that the polyphase structure is also possible
in graph signal processing. Without loss of generality, A is assumed
to be

A =

[
0 B
B> 0

]
, (9)

where B ∈ R|L|×|H| represents edges between L and H . Addition-
ally, let us define B̃ = BB>.

3.1. Analysis Polyphase

We assume that the lowpass and highpass filters in the analysis bank
are the n0 and n1th order polynomials, respectively. They are repre-
sented as follows:

H0(A) =

n0∑
m=0

amAm (10)

H1(A) =

n1∑
m=0

bmAm. (11)

The filtering-then-downsampling operation is represented as[
f̃L
f̃H

]
=

[
(↓ JL)H0(A)
(↓ JH)H1(A)

] [
fL
fH

]
. (12)

We have the following proposition for the analysis polyphase
matrix:

Proposition 1. (Analysis polyphase structure) For a connected bi-
partite graph G, the analysis transform matrix of two-channel criti-
cally sampled spectral graph filter banks can always be represented
as [

(↓ JL)H0

(↓ JH)H1

]
= Hp(A)

[
I|L| 0
0 B

]
, (13)

where

Hp(A) :=

[
H00(B̃) H01(B̃)

H11(B̃>) H10(B̃>)

]
(14)

in which3

H00(B̃) =
∑
m

a2mB̃m

H01(B̃) =
∑
m

a2m+1B̃
m

H10(B̃>) = b0P +
∑
m

b2m+2(B̃>)mB>

H11(B̃>) =
∑
m

b2m+1(B̃>)mB>,

(15)

and P ∈ R|H|×|L| satisfies PB = I|H|.

Proof. First, we consider the lowpass filter H0(A). It is represented
as

H0(A) =
∑
m

a2mA2m +
∑
m

a2m+1A2m+1. (16)

Since A is bipartite and can be represented as (9),
∑
m a2mA2m in

(16) is rewritten as∑
m

a2mA2m = a0

[
I|L| 0
0 I|H|

]
+ a2

[
B̃ 0

0 B̃>

]
+ · · ·

= diag

(∑
m

a2mB̃m,
∑
m

a2m(B̃>)m
)
.

(17)

Similarly,
∑
m a2m+1A2m+1 in (16) is rewritten as∑

m

a2m+1A2m+1

= diag

(∑
m

a2m+1B̃
m,
∑
m

a2m+1(B̃>)m
)
A.

(18)

Since the downsampler (↓ JL) keeps the first |L| elements,

(↓ JL)H0(A) =
[
H00(B̃) H01(B̃)

] [I|L| 0
0 B

]
. (19)

With a similar technique, the highpass filter followed by the down-
sampling by (↓ JH) can be represented as

(↓ JH)H1(A) =
[
H11(B̃>) H10(B̃>)

] [I|L| 0
0 B

]
. (20)

If G is connected, there is at least one nonzero element at each row
(column) in B. Therefore, we can always find P which satisfies
PB = I|H|. By combining (19) and (20), we completed the proof.

3.2. Synthesis Polyphase

Similar to the analysis bank, we assume that the lowpass and high-
pass filters in the synthesis bank are the k0 and k1th order polyno-
mials, respectively. They are represented as follows:

F0(A) =

k0∑
m=0

cmAm (21)

F1(A) =

k1∑
m=0

dmAm. (22)

3Hereafter, the index m starts from 0 (m = 0, 1, . . .).
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Similarly to the above, the upsampling-then-filtering operation of the
downsampled signals f̃L ∈ R|L| and f̃H ∈ R|H| is written as

f̂ =
[
F0(A)(↑ JL)f̃L + F1(A)(↑ JH)f̃H

]
, (23)

and the synthesis bank has the following polyphase structure.

Proposition 2. (Synthesis polyphase structure) For a connected bi-
partite graph G, the synthesis transform matrix of two-channel crit-
ically sampled spectral graph filter banks can always be represented
as [

F0(A)(↑ JL)f̃L + F1(A)(↑ JH)f̃H

]
=

[
0 I|L|
B> 0

]
Fp(A)

[
f̃L
f̃H

] (24)

where

Fp(A) :=

[
F01(B̃) F10(B̃>)

F00(B̃) F11(B̃>)

]
(25)

in which

F00(B̃) =
∑
m

c2m(B̃)m

F01(B̃) =
∑
m

c2m+1(B̃)m

F10(B̃>) = d0Q +
∑
m

d2m+2(B̃>)mB>

F11(B̃>) =
∑
m

d2m+1(B̃>)mB>,

(26)

and Q ∈ R|L|×|H| satisfies B>Q = I|H|.

Proof. Similar to Proposition 1, F0(A) can be rewritten as

F0(A) =
∑
m

c2mA2m +
∑
m

c2m+1A2m+1, (27)

where

∑
m

c2mA2m = diag

(∑
m

c2mB̃m,
∑
m

c2m(B̃>)m
)

(28)

∑
m

c2m+1A2m+1

= A diag

(∑
m

c2m+1B̃
m,
∑
m

c2m+1(B̃>)m
)
.

(29)

After the upsampling by (↑ JL), the last |H| elements are zero as
shown in (2), and thus,

F0(A)(↑ JL)f̃L =

[
0 I|L|
B> 0

] [
F01(B̃)

F00(B̃)

]
f̃L. (30)

F1(A)(↑ JH)f̃H can also be calculated similarly. If G is con-
nected, we can always find Q which satisfies B>Q = I|H|. By
combining the above expressions, we completed the proof.

Fig. 4. Equivalent polyphase structure of a two-channel spectral
graph filter bank.

3.3. Perfect Reconstruction Condition

As a result, the transformation of the graph signal f by a two-
channel critically sampled spectral graph filter bank can be written
with the above polyphase matrices as:

f̂ =

[
0 I|L|
B> 0

]
Fp(A)Hp(A)

[
I|L| 0
0 B

]
f . (31)

It is clear that [
0 I|L|
B> 0

] [
I|L| 0
0 B

]
= A. (32)

Therefore, the perfect reconstruction condition becomes very clear
by using the polyphase structure:

Fp(A)Hp(A) = I. (33)

Since the multiplication by A can be considered as the shift of
the graph signal [29], the output signal is a “delayed” graph signal.
It can be considered as a counterpart of classical signal processing.

3.4. Efficient Implementation

Thanks to the polyphase structure, we can move the downsampler
before the analysis filtering, and the upsampler after the synthesis
filtering. The polyphase form is illustrated in Fig. 4 and it is very
easy to parallelize. The polyphase matrices (14) and (25) mean that
the internal filtering within each set (L or H) is firstly performed,
and the resuts are combined to obtain the transformed coefficients.

4. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a polyphase structure of two-channel critically
sampled spectral graph filter banks. Similar to classical signal pro-
cessing, it can move downsampling and upsampling operators before
and after the analysis and synthesis filtering operations, respectively.
The number of transformed coefficients in the lowpass and highpass
channels are not necessarily to be N/2.

As a future extension, a generalization to the M -channel case
and the cascaded two-channel structure will be an interesting step.
The non-bipartite case should also be considered. Furthermore, de-
sign of spectral graph filter banks with the proposed polyphase struc-
ture is a possible approach. For example, a lifting structure, which
is a generalization of the classical signal processing counterpart [30,
31], would be interesting.
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[24] M. Vetterli and J. Kovačevic, Wavelets and subband coding.
NJ: Prentice-Hall, 1995.

[25] G. Strang and T. Q. Nguyen, Wavelets and Filter Banks. MA:
Wellesley-Cambridge, 1996.

[26] O. Teke and P. P. Vaidyanathan, “Extending classical multi-
rate signal processing theory to graphs—Part I: Fundamentals,”
IEEE Trans. Signal Process., vol. 65, no. 2, pp. 409–422, 2016.

[27] ——, “Extending classical multirate signal processing theory
to graphs—Part II: M -Channel filter banks,” IEEE Trans. Sig-
nal Process., vol. 65, no. 2, pp. 423–437, 2016.

[28] F. Harary, D. Hsu, and Z. Miller, “The biparticity of a graph,”
J. Graph Theory, vol. 1, no. 2, pp. 131–133, 1977.

[29] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., vol. 61, pp. 1644–
1656, 2013.

[30] W. Sweldens, “The lifting scheme: A custom-design construc-
tion of biorthogonal wavelets,” Appl. Comput. Harmon. Anal.,
vol. 3, no. 2, pp. 186–200, 1996.

[31] I. Daubechies and W. Sweldens, “Factoring wavelet transforms
into lifting steps,” Journal of Fourier Analysis and Applica-
tions, vol. 4, no. 3, pp. 247–269, 1998.

4148


