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ABSTRACT

We propose an algorithm to uncover the intrinsic low-rank com-
ponent of a high-dimensional, graph-smooth and grossly-corrupted
dataset, under the situations that the underlying graph is unknown.
Based on a model with a low-rank component plus a sparse per-
turbation, and an initial graph estimation, our proposed algorithm
simultaneously learns the low-rank component and refines the graph.
The refined graph improves the effectiveness of the graph smooth-
ness constraint and increases the accuracy of the low-rank estimation.
We derive the learning steps using ADMM. Our evaluations using
synthetic and real brain imaging data in a supervised classification
task demonstrate encouraging performance.

Index Terms— Graph Signal Processing, Low Rank, Dimen-
sionality Reduction, Graph Learning, Brain Imaging

1. INTRODUCTION

We consider the problem of uncovering the intrinsic low rank com-
ponent of a high-dimensional dataset. We further focus on data that
resides on a certain graph and the data changes smoothly between
the connected vertices [1]. In many problems, the underlying graph
is unknown or inexact [2, 3, 4]. For example, the graph may be esti-
mated from the input data which is grossly corrupted. We propose an
algorithm to estimate the low-rank component of the data, using the
graph smoothness assumption to assist the estimation. Our algorithm
also simultaneously and iteratively refines the graph to improve the
effectiveness of the graph smoothness constraint, thereby increasing
the quality of low-rank component estimation.

High-dimensional data is common in many engineering areas
such as image / video processing, biomedical imaging, computer
networks and transportation networks. We are specifically interested
in automatic analysis of brain imaging data. In many cases, the task
is to find the spatiotemporal neural signature of a task, by perform-
ing classification on cortical activations evoked by different stimuli
[5, 6]. Common brain imaging techniques are Electroencephalogra-
phy (EEG) and Magnetoencephalography (MEG). These measure-
ments are high-dimensional spatiotemporal data. For instance, in
our experiments, we use a recumbent Elekta MEG scanner with 306
sensors to record the brain activity for 1100 milliseconds. Further-
more, the measurements are degraded by various types of noise (e.g.,
sensor noise, ambient magnetic field noise, etc.) and the noise model
is complicated (potentially non-Gaussian). The high-dimensionality
and noise limit both the speed and accuracy of the signal analysis, that
may result in unreliable signature modeling for classification. The
high-dimensionality of these signals also increases the complexity of
the classifier.

Note that it has been recognized that there are patterns of anatom-
ical links, or statistical dependencies or causal interactions between
distinct units within a nervous system [7]. Some techniques have

also been developed to estimate this brain connectivity graph [8, 9].
However, this task is complicated and in many cases the estimated
graph may not be accurate. Our contribution is to develop a robust
algorithm to determine the reduced dimensionality components that
include task-related information, under the assumption that the brain
imaging data is graph-smooth but the knowledge of the graph is im-
perfect. Specifically, our contributions are: (i) based on a model with
a low-rank component plus a sparse perturbation, and an initial graph
estimation, we propose an algorithm to simultaneously learn the low-
rank component and the graph; (ii) we derive the learning steps using
ADMM [10]; (iii) we evaluate the algorithm using synthetic and real
brain imaging data in a supervised classification task.

1.1. Related Work

This work is inspired by [2]. While the focus of [2] is to learn the
connectivity graph topology, their algorithm also estimates some
noise-free version of the input data as by-product. Gaussian noise
model and Frobenius norm optimization are employed in [2]. There-
fore, their work is suitable for problem when noise is small. In our
work, starting from a model with a low-rank component plus a sparse
perturbation, and an initial graph estimation, we adopt the idea of
[2] to incrementally refine the underlying connectivity graph, thereby
better low-rank estimation of the data can be obtained. As will be
shown in our experiment, our method can perform better with high-
dimensional graph data grossly corrupted by complicated noise, such
as brain imaging signals. In addition to [2], learning a graph from
smooth signals has attracted a fair amount of interests recently [3, 4].
These works focus on learning the graph, and advanced formulations
(e.g., matrix optimization problem) have been derived. Estimation
of the brain connectivity graph using a Gaussian noise model has
been proposed in [11]. On the other hand, focusing on low-rank
estimation, some works have proposed to incorporate spectral graph
regularization [12, 13, 14]. Their graphs are fixed in their algorithms,
pre-computed from the noisy input data. On the contrary, our al-
gorithm uses the improved low-rank estimation to refine the graph,
which in turn is used to improve the quality of the low-rank estimation.
Besides, graph signal processing has been applied to a few different
brain imaging tasks. In [15], graph Fourier transform is applied to
decompose brain signals into low, medium, and high frequency com-
ponents for analysis of functional brain networks properties. [16] uses
the eigenvectors of the graph Laplacian to approximate the intrinsic
subspace of high-dimensional brain imaging data. They experimented
different brain connectivity estimations to compute the graph. [17]
presents a graph based framework for fMRI brain activation mapping.
Graph signal processing has also been shown to be useful in image
compression [18], temperature data [2], wireless sensor data [19]. A
few signal features motivated by graph signal processing have also
been proposed [20, 21]. Moreover, several linear / nonlinear dimen-
sionality methods have been proposed that make use of the graph
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Laplacian of the sample affinity graphs [22, 23, 24] These methods
are geometrically motivated, aim to preserve the local structures of
the data, and involve different algorithms compared to our work.

2. SIMULTANEOUS LOW RANK AND GRAPH
ESTIMATION

We consider X = (x1, . . . ,xn) ∈ Rp×n, the high dimensional data
matrix that consists of n p-dimensional data points. For our brain
imaging data, X are the measurements by the p sensors at the n
time instants, i.e., p time series. We assume the data points have low
intrinsic dimensionality and lie near some low-dimensional subspace.
We assume the following mathematical model for the data:

X = L0 + M0 (1)

L0 ∈ Rp×n is the low-rank component of the data matrix that is
of primary interest in this paper, and M0 ∈ Rp×n is a perturbation
matrix. We assume that M0 can have arbitrarily large magnitude but
its support is sparse.

Principal component analysis (PCA) is the most popular tech-
nique for determining the low-rank component with application do-
mains ranging from image, video, signal, web content, to network.
The classical PCA finds the projection QT ∈ Rk×n of X in a k-
dimensional (k ≤ p) linear space characterized by an orthogonal
basis V ∈ Rp×k, by solving the following optimization:

minimize
V,Q

‖X−VQT ‖2F

subject to VTV = I
(2)

The V and QT matrices are known as principal components and
projected data points, respectively. L = VQT ∈ Rp×n is the
approximation of the low-rank component. The classical PCA suffers
from a few disadvantages. First, it is susceptible to grossly corrupted
data in X. Second, it does not consider the implicit data manifold
information.

Candes et al. [25] addressed the first issue by designing Robust
PCA, which is robust to outliers by directly recovering the low-rank
matrix L from the grossly corrupted X:

minimize
L,M

‖L‖∗ + δ‖M‖1

subject to X = L + M
(3)

‖.‖∗ denotes the nuclear norm which is used as a convex surrogate of
rank.

In this work we propose to extend (3) with an additional graph
smoothness regularization, while the underlying graph topology that
captures the data correlation could be unknown or inexact (thus some
refinement is needed):

minimize
L,M,Φf

‖L‖∗ + δ‖M‖1 + γtr(LTΦfL) + β‖Φf‖2F

subject to X = L + M,

Φf ∈ L

(4)

Here Φf is the graph Laplacian of the feature graph G describing the
correlation between individual features: G = (V, E ,W) consists of a
finite set of vertices V , with |V| = p, a set of edges E , and a weighted
adjacency matrix W = {Wi,j |Wi,j ≥ 0}, with Wi,j quantifying
the similarity between the i-th and j-th features of the p-dimensional

measurement vectors. Φf = D −W, with D being the diagonal
degree matrix. L is the set of all valid p× p graph Laplacian Φ:

L = {Φ : Φij = Φji ≤ 0,Φii = −
∑
j 6=i

Φij} (5)

As will be further discussed in Section 3, we solve (4) iteratively
using alternating minimization with the following justifications:

• L,M given Φf : For a given Φf (even a rough estimate),
tr(LTΦfL) imposes an additional constraint on the underly-
ing (unknown) low-rank data L. Specifically,

tr(LTΦfL) =
1

2

∑
i,j

Wi,j‖l̃i − l̃j‖2, (6)

where l̃i ∈ Rn is the i-th row vector of L. Therefore,
tr(LTΦfL) in (4) forces the row i and j of L to have similar
values if Wi,j is large. Note that in our brain imaging data,
individual rows represent the time series captured by sensors.
Thus, tr(LTΦfL) forces the low-rank representations of
the time series to be similar for highly correlated sensors.
Prior information regarding measurement correlation (such as
the physical distance between the capturing sensors) can be
incorporated as the initial Φf to bootstrap the estimation of L.

• Φf given L,M: On the other hand, for a given estimate of
the low-rank data L, tr(LTΦfL) guides the refinement of Φf
and hence the underlying connectivity graph G. In particular,
a graph G that is consistent with the signal variation in L is
favored: large Wi,j if row i and j of L have similar values. In
many problems, the given graph for a problem can be noisy
(e.g., the graph is estimated from the noisy data itself [13, 14]).
The proposed formulation iteratively improves Φf using the
refined low-rank data. The improved Φf in turn facilitates the
low-rank data estimation.

3. LEARNING ALGORITHM

We propose to solve the problem in Eq (4) with alternating minimiza-
tion scheme where, at each step, we fix one or two variables and
update the other variable.

At the first step, for a given Φf , we solve the following optimiza-
tion problem using ADMM[10] with respect to L and M. It means
given a graph, it estimates the low rank matrix:

minimize
L,M

‖L‖∗ + δ‖M‖1 + γtr(LTΦfL)

subject to X = L + M,
(7)

At the second step, L and M are fixed and we solve the following
optimization problem with respect to Φf , which means that based on
the low rank matrix we got in the previous step, it updates the graph.

minimize
Φf

γtr(LTΦfL) + β‖Φf‖2F

subject to Φf ∈ L
(8)

For equation (8), it can be written as:

minimize
Φf

γtr(LTΦfL) + β‖z‖2F

subject to Φf − z = 0,

Φf ∈ L

(9)
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We can form the augmented Lagrangian of (9) as:

Lρ(Φf , z,u) =γtr(LTΦfL) + β‖Φf‖2F
+
ρ

2
‖z− Φf‖2F + 〈u, z− Φf 〉

(10)

Then we can get the following formula to update for Φf , z and u:

Φk+1
f :=

ρzk − γLTL + u
β
2

+ ρ

zk+1 :=
∏
L

(Φk+1
f − 1

ρ
uk)

uk+1 := uk +
1

k
(zk+1 − Φk+1

f )

(11)

where ρ > 0 is the Lagrangian parameter and
∏
L is the Eu-

clidean projection onto set L.

4. EXPERIMENT

4.1. Synthetic Experiment

In this synthetic experiment, we generate low-rank, graph-smooth and
grossly-corrupted data. We generate synthetic data with the following
model:

X = L0 + M0 (12)

where L0 ∈ Rp×n is a low rank matrix with rank r and M0 is the
sparse matrix.

We generate L0 as a product L0 = PYT where P ∈ Rp×r and
Y ∈ Rn×r . L0 is also graph-smooth and generated as follows. The
(ground-truth) graph consists of p nodes, with each pair of nodes
having a probability of q to be connected together. The edge weights
between different nodes are drew uniformly from 0 to 1 and presented
in a p×p symmetric adjacency matrix W. We calculate the Laplacian
matrix Φf from W and compute the eigenvectors and eigenvalues
of Φf . The eigenvectors, corresponding to top r eigenvalues, are
selected as the columns of P. For matrix Y, the entries are inde-
pendently sampled from a N(0, 1/p) distribution. Therefore, L0 is
low-rank and graph-smooth. We introduce k = ‖M0‖0/p2 errors in
the matrix M0 from an i.i.d Bernoulli distribution. Each corrupted
entry takes a value ±1 with a probability k/2.

We compare the proposed method, GL-SigRep[26], RPCAG[13],
RPCA[25], and PCA on the data to estimate the low rank matrix
and the graph matrix. The estimation accuracies are evaluated by the
reconstruction errors: ‖L̂−L0‖F /‖L0‖F and ‖Φ̂f−Φf‖F /‖Φf‖F .
All the methods are initialized with the same feature similarity graph
(consider each row of X as a node) computed using the procedure in
[14] with a K-nearest neighbor strategy (K = 10).

Table 1 shows the results on synthetic data generated by the
Eq (12) with p = 30, n = 50, r = 3, k = 40%, q = 0.2. With
cross-validation, we set δ = 2.5√

50
, γ = 1.5, β = 1.5. The low rank

approximation of proposed method achieves the smallest error. For
the estimate graph matrix, the proposed method also achieves the
smallest estimation error. Synthetic experiment results show that the
proposed method can achieve good performance on extracting low
rank approximation and the underlying graph from non-Gaussian
noisy data.

4.2. Brain Imaging Data Experiment

We also apply our proposed method on a high-dimensional brain
imaging dataset to extract the brain connectivity graph and the low

Methods Low Rank Matrix Graph Matrix
Proposed Method 0.4278 0.3325
GL-SigRep 7.3263 1.4408
RPCAG 0.4657 -
RPCA 3.5883 -
PCA 7.2942 -

Table 1: Comparison of low rank matrix error and estimated graph
error for synthetic data.

rank approximation from the high dimensionality. This is practically
useful for brain imaging studies: due to the high dimensionality
of data, low signal-to-noise ratio, and small number of available
samples, it is challenging to estimate the low rank approximation in
these studies.

The brain imaging dataset used here is a set of magnetoen-
cephalography (MEG) signal recordings of brain activities, in re-
sponse to two categories of visual stimuli: 320 face images and 192
non-face images. These images were randomly selected and dis-
played passively with no task, and 16 subjects were asked to simply
fixate at the center of the screen. All images were normalized for size
and brightness among other factors, and were each displayed once
for 300 ms with random inter-stimulus delay intervals of 1000 ms to
1500 ms. We used a recumbent Elekta MEG scanner with 306 sensors
to record the brain activity for 1100 milliseconds (100 milliseconds
before and 1000 milliseconds after the presentation) for each stimuli.
The classification task in this experiment is to distinguish signals
evoked by face images from signals evoked by non-face images.

4.2.1. Initial graph matrix

In the proposed method, a suitable starting point is important for
solving the optimization problem. We therefore initialize Φf with
the brain connectivity matrix generated with the resting state mea-
surements. The resting state in our experiment is 100ms of signal
recording before the stimuli presentation. Note that our method and
all other methods are initialized with the same connectivity matrix.

Three different types of brain connectivity graphs are commonly
used in the literature: structural connectivity, functional connectivity
and effective connectivity. Structural connectivity shows the anatomi-
cal structure in the brain; functional connectivity quantifies functional
dependencies between different brain regions; and effective connec-
tivity shows directed or causal relationship between different brain
regions [7].

In this paper we use a coherence connectivity, a functional con-
nectivity, quantifying oscillatory interdependency between different
brain regions [16]. It is the frequency domain analog of the cross-
correlation coefficient. Given two series of signals at, bt and a
frequency f , the first step is to spectrally decompose the signal at tar-
get f to obtain the instantaneous phase at each time point [27]. After
band-pass filtering each signal between f ± 5Hz, the convolution of
f(t) with a Morlet wavelet centered at frequency f provides the in-
stantaneous phase at time t. Thus, the two signals can be represented
as: a = Ea(t)ejψa(t) and b = Eb(t)e

jψb(t), where Ea(t) and Eb(t)
are amplitudes. ψa(t) and ψb(t) are the phase for A and B at time t.
Then the coherence connectivity edge is calculated as below:

wA,B =

∣∣∣∣∣∣
1
T

∑T
t=1 Ea(t)Eb(t)e

j[ψa(t)−ψb(t)]√
1
T

∑T
t=1 Ea(t)2 ·

√
1
T

∑T
t=1 Eb(t)

2

∣∣∣∣∣∣ (13)
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After we get the adjacency matrix W, we can calculate the
Laplacian matrix Φf = D−W as the initialization.

4.2.2. Brain Imaging Data Experiment Results

To evaluate the performance of proposed method, we use a supervised
classifier, SVM, to classify the low-rank outputs into face and non-
face classes. We compare these methods based on their classification
accuracies as well as compatibility of their connectivity graph matrix
to the related neuroscience findings on suggested cortical regions
involving face processing.

MEG and EEG components corresponding to the face/non-face
distinction have been reported at latencies of approximately 100 ms,
and more reliably at 170 ms (also known as N170 marker, reported at
about 145ms in MEG studies), after visual stimulus onset (e.g. see
[28, 29, 30, 31]). In this experiment, we therefore choose the data
from two time slots, namely 96ms to 105ms and 141ms to 150ms
after the stimuli presentation, to be able to compare our automate
assessment with the related neuroscience literature.

We applied commonly employed mean subtraction on the time-
locked data. In addition to this step, we refrained from providing any
prior information to our method. This is due to the goal of this paper
to showcase the capabilities of our proposed method, and therefore
chose a pure data driven approach to the problem of estimation of
underlying connectivity graph. For example, we did not enforce con-
straints in the optimization step on the sensor sensitivity to field spread
(i.e. nearby electrodes record similar brain activities). Similarly, we
did not differentiate between the magnetometers and gradiometers.
With no prior information fed to the method along-side the data, the
estimated underlying graph can be easily compared with the results
of other methods. This is while more specific experiments can be
conducted in the future to reveal the effects of prior information on
the results.

Given the input data and the initial graph, our proposed method
outputs some low rank estimation L. We decompose the low rank
matrix L using SVD, select the components according to the rank of
L, project the data onto the components to obtain low-dimensionality
representations, and classify the reduced dimension data. We compare
the proposed method with GL-SigRep, RPCAG, RPCA and PCA.
Using cross-validation with δ ∈ [1:0.5:8]√

50
, γ ∈ 10[−2:1:1], β

γ
∈ [1 :

5 : 10] (for step 2, only the ratio of β and γ matters the results),
we set δ = 1√

50
, γ = 0.1, β = 0.5 for the first time slot and δ =

1√
50
, γ = 0.01, β = 0.05 for the second time slot.Table 2 shows the

classification results for different methods on the two time slots. The
proposed method gives the best results for both time slots.

For another comparison, in Figure 1, we visualize the estimated
graph matrix Φf by our method as well as the GL-SigRep method,
by projecting the graph connectivity weights on the MEG sensor
locations. The first row of Figure 1 shows the initialization graph
used for both method, the coherence connectivity graph obtained
from the resting state data. The second row visualizes the output of
the two methods for data at 100ms and 145ms time point.

Comparing the graph visualization results from GL-SigRep (Fig-
ure 1, b and d), one can see that using the data from 96-105ms,
GL-SigRep indicates connectivities at the left temporal and middle
and inferior frontal gyri. The estimated graph by GL-SigRep does
not significantly change using the data from 141-150ms either. None
of these regions high-lighted by GL-SigRep has apparent link with
early visual processing described in neuroscientific literature (note
that GL-SigRep assumes Gaussian noise and would not be appro-
priate for MEG data). At 100ms after projection of a visual stimuli

Time slot 96ms-105ms 141ms-150ms
Methods SVM rank SVM rank
Proposed Method 66.65% 21 81.91% 25
GL-SigRep 64.97% 21 78.93% 25
RPCAG 64.21% 23 81.15% 29
RPCA 62.89% 32 80.15% 33
PCA 64.22% 32 78.81% 33

Table 2: Classification performance (accuracies) for brain imaging
data in two different time slots.

(a) (b) (c) (d)

Fig. 1: Graph Estimation results. First row, the initial graph. Second
row, (a) and (b) are the results for the propose method and GL-SigRep,
respectively, on signal data from 96ms - 105ms. (c) and (d) are the
results for the proposed method and GL-SigRep, respectively, on
signal data from 141ms - 150ms.

like a face image, neuroscientific literature seem to report the visual
information is still being processed at early visual cortex at occipital
and occipitotemporal regions (e.g. see [29, 31]). Unlike GL-SigRep
results, at 96-105ms, the graph connectivity estimation by our method
(Figure 1, a) tends to span more on the occipital and left occipitotem-
poral regions, and therefore seem to have reached a more successful
estimation of the true underlying connectivity at this time-point.

The connectivity graph estimated by our method during 141ms
to 150ms (Figure 1, c) converges on connections on the right occip-
itotemporal region. This graph connectivity is comparable to the
neuroscientific findings on face perception, and specifically the N170
marker. In several studies such as [28, 30], the fusiform gyrus (at the
occipitotemporal region) are suggested for processing face perception
during about 145ms after presentation of a face image stimuli, also
known as N170 marker (named after its first discovery at 170ms in
EEG studies). In this work, our technique reveals almost the same
regions as important graph connections for face perception. The com-
patibility of our estimated graph connectivity with neuroscientific
literature further supports our proposed method over others.

5. CONCLUSION

We propose an algorithm in learning the low rank component and
graph simultaneously. It is suitable for cases where the perturbations
on the low rank components are grossly but sparse. We showed that
the proposed method on both synthetic data and brain imaging data
is competitive. Our method achieves good performance on both low
rank approximation and graph estimation. In addition, when applying
to the brain imaging data, our method could recover a connectivity
graph that is more compatible to the neuroscientific literature, indi-
cating its better estimation of the true underlying graph. Future work
applies the proposed algorithm for other high-dimensional data [32].
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