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ABSTRACT

Neural node embedding has been recently developed as a
powerful representation for supervised tasks with graph data.
We leverage this recent advance and propose a novel approach
for unsupervised community discovery in graphs. Through
extensive experimental studies on simulated and real-world
data, we demonstrate consistent improvement of the proposed
approach over the current state-of-the-arts. Specifically, our
approach empirically attains the information theoretic limits
under the benchmark Stochastic Block Models and exhibits
better stability and accuracy over the best known algorithms
in the community recovery limits.

Index Terms— Community Detection, Stochastic Block
Model, Neural Embedding

1. INTRODUCTION
Learning a representation for nodes in a graph, also known
as node embedding, has been an important tool for extract-
ing features that can be used in machine learning problems
involving graph data [1, 2, 3, 4]. Perhaps the most widely
adopted node embedding is the one based on the eigende-
composition of the adjacency matrix or the graph Laplacian
[2, 5, 6]. Recent advances in word embeddings for natural
language processing such us [7] has inspired the development
of analogous embeddings for nodes in graphs [8, 3]. These
so-called “neural” node embeddings have been applied to a
number of supervised learning problems such us link predic-
tion and node classification and demonstrated state-of-the-art
performance [8, 3, 4].

In contrast to applications to supervised learning prob-
lems in graphs, in this work we leverage the neural embed-
ding framework to develop an algorithm for the unsupervised
community discovery problem in graphs [9, 10, 11, 12]. The
key idea is straightforward: learn node embeddings such that
vectors of similar nodes are close to each other in the latent
embedding space. Then, the problem of discovering a com-
munity in graph can be solved by finding clusters in the em-
bedding space.

We focus on non-overlapping communities and validate
the performance of the new approach through a comprehen-
sive set of experiments on both synthetic and real-world data.
Results demonstrate that the performance of the new method

∗CL and PI was supported by the U.S. NSF under Grant 1527618.

is consistently superior to those of spectral methods across a
wide range of graph sparsity levels. In fact, we find that the
proposed algorithm can empirically attain the information-
theoretic phase transition thresholds for exact and weak
recovery of communities under the Stochastic Block Model
(SBM) [13, 14, 11, 15]. SBM is a canonical probabilistic
model for random graphs with latent structure and has been
widely used for empirical validation and theoretical analysis
of community detection algorithms [16, 17, 10, 9]. In partic-
ular, when compared to the best known algorithms based on
Acyclic Belief Propagation (ABP) that can provably detect
communities at the information-theoretic limits [15, 11, 14],
our approach has consistently better accuracy. In addition, we
find that ABP is very sensitive to random initialization and
exhibits high variability. In contrast, our approach is stable
to both random initialization and a wide range of algorithm
parameter settings.
Related works: The community detection problem has been
extensively studied [9, 10, 12]. SBM was first proposed
in [16, 18, 19] as a canonical model for analysis and vari-
ous community detection algorithms based on it have been
proposed, e.g., [20, 5, 21, 22]. Only very recently have
information-theoretic limits for community recovery under
the general SBM model been established [13, 11, 15].

Graph neural embedding was motivated in the famous
“word2vec” algorithm for natural language processing [7].
This was extended to graphs in [3] by viewing nodes as
“words” and forming “sentences” via random paths on the
graph. Different ways of creating “sentences” of nodes was
further explored in [8]. The embeddings have been used for
supervised tasks in [3, 8] and semi-supervised tasks in [4].

2. NODE EMBEDDING FOR COMMUNITY
DISCOVERY

Let G be a graph with n nodes and K latent communities.
We focus on non-overlapping communities and denote by
πi ∈ {1, . . . ,K} the latent community assignment for node
i. Given G, the goal is to infer the community assignment π̂i.

Our approach is to learn, in an unsupervised fashion, a
low-dimensional vector representation for each node that cap-
tures its local neighborhood structure. These vectors are re-
ferred to as node embeddings. The premise is that if done
correctly, nodes from the same community will be close to
each other in the embedding space. Then, communities can
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be found via clustering of the node embeddings.
We proceed as in the skip-gram framework recently de-

veloped in natural language processing [7, 3]. A document is
an ordered sequence of words from a vocabulary. A w-skip-
bigram is an ordered pair of words (i, j) that occur within a
distance of w words from each other within a sentence in the
document. A document is then viewed as a multisetD+ of all
its w-skip-bigrams (i, j) which are generated in an IID fash-
ion according to a joint probability p((i, j)) which is related
to the word embedding vectors ui,uj ∈ Rd, of words i and j
respectively. Now consider a multiset D− of w-skip-bigrams
(i, j) which are generated in an IID fashion according to the
product probability p((i)) · p((j)) where the p((i))’s are the
unigram (single word) probabilities. The w-skip-bigrams in
D+ are labeled positive (D = +1) and those in D− nega-
tive (D = −1). In the negative sampling framework [7, 3],
the posterior probability that an observed w-skip-bigram will
be labeled as positive is modeled as p(D = +1|(i, j)) =

1

1+e
−u>

j
ui
. The word embedding vectors {ui} are then se-

lected to maximize the posterior likelihood of observing all
the positive and negative samples, i.e.,

argmax
ui

∏
(i,j)∈D+

p(D = +1|(i, j))
∏

(i,j)∈D−

p(D = −1|(i, j))

= argmin
ui

[∑
D+

ln(1 + e−u
>
j ui) +

∑
D−

ln(1 + e+u>j ui)

]
(1)

To apply this word embedding framework to node embed-
ding, the key idea is to view nodes as words and a document as
a collection of sentences that correspond to paths of nodes in
the graph. We simulate r random walks (node-sentences) on
G of fixed length ` starting from each node. The set D+ is the
multiset of all node pairs (i, j) for each node i and all nodes
j that are within ±w steps of node i in all the simulated paths
whenever i appears. The set D− is constructed by drawing
for each node i a set of m nodes j1, . . . , jm in an IID manner
from all the nodes according to the (estimated) unigram node
(word) distribution across the document of node paths. Once
the paths are generated, we optimize Eq. 1 using stochastic
gradient descent [7]. Once the embedding vectors ui’s are
learned, we apply K-means clustering to get the community
memberships for each node. These steps are summarized in
Algorithm 1. We note that since stochastic gradient descent
which is used to optimize Eq. 1 can be parallelized, the pro-
posed algorithm scales nicely to large graphs.

3. EXPERIMENTAL STUDY
We present a comprehensive set of experimental results in this
section for both simulated and real-world graphs.1 We com-
pare the proposed “vec” algorithm against: (1) Spectral Clus-
tering (SC) that is widely adopted in practice [6, 21, 20, 5]

1Our implementation is available at https://github.com/
cy93lin/SBM_node_embedding

Algorithm 1 vec: Community Disc.via Node Embedding

Input: Graph G, Number of communities K; Paths per
node r, Length of path `, Embedding dimension d, Con-
textual window size w
Output: Estimated Community memberships π̂1, . . . , π̂n
for Each node v and t ∈ {1 . . . r} do

sv,t ← A random path of length ` starting from node i
end for
{ûi}ni=1 ← solve (1) with paths {sv,t} and window size w.
π̂1, . . . , π̂n ←K-means({ûni=1}i,K)

and (2) Acyclic Belief Propagation (ABP) which can achieve
the information-theoretic limits in SBMs [14, 11, 15].
Metrics: We use the commonly used Normalized Mutual
Information (NMI) [9] and Correct Classification Rate
(CCR) metrics to measure the clustering accuracy when
ground-truth community assignment is available. For real-
world datasets, we also calculate the Modularity [23] which
is an oft-used measure of community quality.
Implementation details: Unless otherwise mentioned, we
set r = 10, ` = 60, w = 8, and d = 50 for the proposed
algorithm. We will discuss the choice of these algorithm pa-
rameters later. For SC we use a state-of-the-art implementa-
tion that can handle large scale sparse graphs [6]. To assure
the best performance of ABP, we assume the ground-truth
SBM model parameters are known, and adopted the parame-
ters suggested in [15] which are functions of the ground-truth.

3.1. Stochastic Block Models
Generative procedure: In an SBM, a random graph with K
latent communities is generated thus: (1) Each node i is ran-
domly assigned to one community πi ∈ {1, ...K}with proba-
bility p = (p1, . . . , pK); (2) For each unordered pair of nodes
{i, j}, an edge is formed with probability Qn(πi, πj) ∈ [0, 1].
Qn are the self- and cross-community connection probabili-
ties and are typically assumed to vanish as n→∞ to capture
the sparse connectivity (average node degree � n) of most
real-world networks [24].
Weak and exact recovery: We consider two definitions of
recovery studied in SBMs. Let accuracy α be the fraction
of nodes for which the estimated communities π̂ agrees with
π (for the best node relabeling). Then, (1) Weak recovery
is solvable if an algorithm can achieve accuracy α > ε +
maxk pk, for some ε > 0, with probability 1− on(1), (2) Ex-
act recovery is solvable if an algorithm can achieve accuracy
α = 1 with probability 1− on(1).
Simulation setting: We simulate graphs with balanced com-
munities p = (1/K, . . . , 1/K). For Qn, we consider the
standard planted partition model where Qn(1, 1) = . . . =
Qn(K,K) andQn(k, k′) for all k 6= k′ are the same. We con-
sider two scaling regimes for Qn, (i) constant expected node
degree: Qn(k, k) = c

n , Qn(k, k′) =
c(1−λ)
n and (ii) logarith-
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mic scaling: Qn(k, k) = c′ ln(n)
n , Qn(k, k′) = c′ ln(n)(1−λ)

n .
Intuitively, c and c′ determine sparsity while λ determines the
separation between communities. Let µ := 1+(K−1)(1−λ).
The most recent results in [13, 11, 15] can be summarized as:
Condition 1: For constant scaling, weak recovery is guaran-
teed if λ

2c
Kµ > 1. For K ≤ 4, the condition is also necessary.

Condition 2: For logarithmic scaling, exact recovery is solv-
able if and only if

√
c′ −

√
c′(1− λ) >

√
K.

We choose different combinations of c, c′,K, λ to explore
recovery behavior around the weak and exact recovery thresh-
olds. We set λ = 0.9 in both cases as it is typical in real-world
datasets (see Sec. 3.2). For each combination of model pa-
rameters, we simulate 5 random graphs and report the mean
and standard deviation of NMI and CCR.
Weak recovery phase transition: To understand behavior
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Fig. 1: NMI (dashed) and CCR (solid) versus sparsity level c for
vec, SC, and ABP on SBM graphs with constant degree scaling.
Here, p is uniform, K = 2, λ = 0.9, and n = 10000. The ver-
tical dashed line is cweak = 2.8. This figure is best viewed in color.

around the weak recovery limit, we simulated SBM graphs
with K = 2, n = 10000, and λ = 0.9 at various sparsity lev-
els c in the constant scaling regime. Weak recovery is possible
if, and only if, c > cweak ≈ 2.8. The results are summarized
in Fig. 1.

Figure 1 reveals that the proposed vec algorithm exhibits
weak recovery phase transition behavior: for c > cweak,
CCR > 0.5 and when c < cweak, CCR ≈ 0.5 (random guess).
The behavior of ABP which provably achieves the weak re-
covery limit [15] is also shown in Fig. 1. Compared to ABP,
vec has consistently superior mean clustering accuracy over
the entire range of c values. In addition, we note that the vari-
ance of NMI and CCR for ABP is significantly larger than
vec. This is discussed later in this section. SC, however, does
not achieve weak recovery for sparse c (cf. Fig. 1) which is
consistent with theory [20]. To reinforce our observations we
also simulated SBM graphs with increasing graph size n and
K = 2, λ = 0.9, c = 5.0 held fixed in the constant degree
scaling regime. Since c = 5.0 > cweak, weak recovery is pos-
sible asymptotically. As shown in Fig. 2, vec can empirically
achieve weak recovery for both small and large graphs, and
consistently outperforms ABP and SC.
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Fig. 2: NMI (dashed) and CCR (solid) versus n for vec, SC, and
ABP on SBM graphs with constant degree scaling. Here, p is uni-
form, K = 2, λ = 0.9, c = 5.0 > cweek.

Crossing below the weak recovery limit for K > 4: Here
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Fig. 3: NMI (dashed) and CCR (solid) versus sparsity level c for
vec, SC, and ABP on SBM graphs with constant degree scaling.
Here, p is uniform, K = 5, λ = 0.9, and n = 1000. The verti-
cal dashed line is cweak = 8.6.
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Fig. 4: NMI (dashed) and CCR (solid) versus sparsity level c′ for
vec, SC, and ABP on SBM graphs with logarithmic scaling. Here, p
is uniform, K = 2, λ = 0.9, and n = 10000. The vertical dashed-
line is at c′exact = 4.3.

we explore the behavior of vec below the weak recovery limit
for K > 4. As in Fig. 1, we simulated SBM graphs in the
constant degree scaling regime for various sparsity levels c
fixing K = 5, λ = 0.9, and n = 1000. In this setting, c >
cweak = 8.7 is sufficient but not necessary for weak recovery.
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Fig. 5: NMI (dashed) and CCR (solid) of vec for different algorithm parameters: (a) the number of random paths simulated from each node
p, (b) the length of each random path `, (c) the size of the local window w, and (d) the embedding dimension d. In each subplot, only one
parameter is varied keeping others fixed. When fixed, the default parameter values are r = 10, ` = 60, w = 8, d = 50.

The results are summarized in Fig. 3.
As in Fig. 3, the vec algorithm can cross the weak recov-

ery limit: for some c ≤ cweak, CCR > 1
K and NMI > 0 with a

significant margin. Here too we observe that vec consistently
outperforms ABP and SC with a large margin.
Exact recovery limit: We now turn to explore the behavior
of vec near the exact recovery limit. Figure 4 plots NMI and
CCR as a function of increasing sparsity level c′ for SBM
graphs under logarithmic node degree scaling fixing K = 2,
N = 10000, and λ = 0.9. In this setting, exact recovery is
solvable if, and only if, c′ > c′exact = 4.3. As can be seen
in Fig. 4, the CCR and NMI accuracy values of vec converge
to 1.0 as c′ ≥ c′exact. Therefore, vec empirically achieves the
exact recovery limit. We note that SC can match the perfor-
mance of vec when c′ is large, but cannot correctly detect
communities for very sparse graphs (c′ ≤ 1). Note also that
vec significantly outperforms ABP in this scaling scheme.
Due to limited space we omit plots of accuracy versus n.
Parameter sensitivity of proposed approach: The perfor-
mance of vec depends on the number of random paths per
node r, the length of each path `, the local window size w,
and the embedding dimension d. We simulated SBM graphs
under logarithmic scaling with K = 5, N = 10, 000, c′ =
2, λ = 0.9 and applied vec with different choices for r, `, w,
and d (cf. Fig. 5). While the performance of vec is robust
to r, `, and d, a relatively large local window size w ≥ 3 is
essential to vec (cf. Fig. 5(c)). This suggests that exploiting a
larger graph neighborhood is critical for the success of vec.
Randomness in performance of vec and ABP: We also
studied the effect of random initialization in vec and ABP.
We simulated two SBM graphs as described in Table 1. For a
fixed graph, we run vec and ABP 10 times and summarize the
mean and standard deviation of NMI and CCR. We observe
that the variance of ABP is an order of magnitude higher than
vec indicating its sensitivity to initialization.

3.2. Real World Graphs
Finally, we considered two real-world datasets with ground
truth (non-overlapping) community labels: the Political Blogs
network [25] and the Amazon co-purchasing network [26].
Their basic statistics are summarized in Table 2. Here, λ̂, ĉ′
are maximum likelihood estimates of λ, c′ under the planted

Table 1: Mean and std.dev of NMI and CCR for 10 runs on the
same graph. Sim1: a graph with constant scaling, K = 5, N =
10000, c = 15.0, λ = 0.9. Sim2: a graph with logarithmic scaling,
K = 2, N = 10000, c′ = 2.0, λ = 0.9.

NMI CCR
Expt. vec ABP vec ABP
Sim1 0.42± 0.004 0.14± 0.03 0.74± 0.002 0.42± 0.06
Sim2 0.96± 0.002 0.73± 0.37 0.99± 0.0003 0.93± 0.15
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Fig. 6: t-SNE visualization of learned embedding vectors in the
Blogs dataset. The markers reflect ground-truth groups.

Table 2: Summary of real world dataset parameters.
Dataset n K # edges λ̂ ĉ′ maxk p̂k
Blogs 1, 222 2 16, 714 0.89 6.9 0.52

Amazon 334, 844 4 925, 803 0.94 0.7 0.74

Table 3: Results on real world datasets.
NMI Modularity

Data vec SC ABP vec SC ABP
Blogs 0.745 0.002 0.686 0.425 −0.058 0.406
Amazon 0.310 0.006 0.025 0.663 0.002 0.470

partition SBM. Note that in Amazon, the ground truth com-
munity proportions are highly unbalanced. We report NMI
and Modularity values for vec, SC, and ABP applied to these
datasets. We do not report CCR since it does not account
for the unbalanced communities in real-world data. To apply
ABP, we set the algorithm parameters using the fitted SBM
parameters as suggested in [15]. As shown in Table 3, vec
achieves better accuracy compared to SC and ABP. We also
visualize the learned embeddings in Political Blogs using the
standard t-SNE tool [27] in Fig. 6. The picture is consistent
with the intuition that nodes from the same community are
close to each other in the latent embedding space.
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