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ABSTRACT
The ability to obtain accurate estimators from a set of measurements is
a key factor in science and engineering. Typically, there is an inherent
assumption that the measurements were taken in a sequential order, be
it in space or time. However, data is increasingly irregular so this as-
sumption of sequentially obtained measurements no longer holds. By
leveraging notions of graph signal processing to account for these ir-
regular domains, we propose an unbiased estimator for the mean of a
wide sense stationary graph process based on the diffusion of a single
realization. We also provide a bound on the estimation error and deter-
mine the conditions for a specific rate of convergence of the estimator
to the mean, in a weak law of large numbers fashion.

Index Terms— Graph signal processing, wide sense stationary, es-
timation theory, unbiased estimator, law of large numbers

1. INTRODUCTION

A basic element within statistical estimation theory is the existence of
a sample set of measurements with a certain probabilistic model. In
many useful results there is an implicit assumption that the measure-
ments are taken sequentially, which often manifests as the assumption
that the samples are drawn from a stationary process. One such impor-
tant result is the Law of Large Numbers (LLN) which states the con-
vergence of the sample mean to the true mean provided the validity of
some simple conditions [1,2]. In many modern contexts, however, data
is supported on irregular domains so that the sequential assumption in-
trinsic to measurements in time or space no longer holds [3–6]. The the-
ory of graph signal processing (GSP) provides tools to study settings in
which the measurements’ support is described by a weighted graph that
encodes relationships between the signals’ components [7–10]. Instru-
mental in GSP is the notion of a shift operator that is formally defined
as a matrix having the same sparsity pattern of the graph – the graph’s
adjacency matrix, for example. The shift operator is interpreted as a
linear operator that can be applied to a graph signal and generalizes the
conventional time shifts that are utilized in classical signal processing.

This paper derives a weak LLN for signals supported on graphs
(GLLN). In deriving this GLLN we observe that there are two aspects
that have to be considered: (i) What is the graph equivalent of perform-
ing a time average and (ii) What is the graph equivalent of a stationary
signal. Both of these aspects have answers in the existing literature. To
answer (i) observe that time averages can be either written as averages
of individual signal components or as averages at a fixed point in time
of shifted versions of the signal. Since performing averages of indi-
vidual signal components of a graph signal disregards the information
encoded in the graph it is more natural to consider averages at a given
node obtained through successive application of the shift operator; see
(2). To answer (ii) we resort to the notion of signals that are wide sense
stationary with respect to a shift operator [11–13]. These signals satisfy
a form of measure invariance with respect to application of the shift op-
erator and are such that it is possible to define a power spectral density
that completely characterizes their covariance matrix.
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We begin the paper with a discussion of wide sense stationary graph
signals (Section 2) and the appropriate notion of mean of a stationary
graph signal (Section 2.1). To derive the GLLN we consider sequen-
tial application of the graph shift operator and focus on the average of
the first n signals that result from application of the shift (Section 3).
We show that this is an unbiased estimator of the mean save for a nor-
malization constant. The GLLN states that this unbiased estimate is
concentrated around the mean as long as the eigenvalues of the graph
satisfy some mild properties (Proposition 3). This general result is par-
ticularized to directed cycles – where we recover the weak LLN for
stationary processes –, and Erdős-Rényi (ER) graphs. Graph whose
spectra do not satisfy the conditions in Proposition 3 are discussed in
Section 3.1. The paper closes with numerical results (Section 4) and
concluding remarks (Section 5).

2. STATIONARY GRAPH SIGNALS

Consider a network G = (V, E ,W) that encodes the irregular structure
that supports a given signal x. That is, let V be a finite set of n nodes,
E be the set of edges such that (k, `) ∈ E if and only if node k is
connected to node `; andW : E → R the function that gives different
weights to the edges of the network. Define Nk = {` ∈ {1, . . . , n} :
(`, k) ∈ E} as the incoming neighborhood of node k. Let x : V → R
be the graph signal that attaches a certain value to each node. By fixing
an arbitrary ordering of the nodes we can view x as a vector in Rn
where each element represents the value of the signal at each node [7,8].
Also, the graph structure and its impact on the signal can be captured
by the graph shift operator S ∈ Rn×n [14]. Matrix S is such that [S]k,`
can be nonzero only if k = ` or if (k, `) ∈ E . We further assume that
S is a normal matrix, i.e. it satisfies SSH = SHS, so that it has an
eigendecomposition in terms of an orthonormal basis of eigenvectors
{v1, . . . ,vn}, that is S = VΛsV

H where V = [v1, · · · ,vn] is a
unitary matrix and Λs = diag(λ1, . . . , λn) is the diagonal matrix
containing the eigenvalue λk associated to the eigenvector vk, k =
1, . . . , n. Examples of normal graph shift operators are the adjacency
matrices of some graphs and the Laplacian of any undirected graph, and
their respective normalized counterparts [15]. The eigendecomposition
of S allows for the definition of a Graph Fourier Transform (GFT) given
by x̃ = VHx and its inverse GFT (iGFT) given by x = Vx̃.

In the present paper we focus on signals that can be described as
wide sense stationary (WSS) graph processes [12]. This class of sig-
nals satisfy that their covariance matrix Cx is invariant when shifting
the signal c steps backward and forward from reference points a and b.
Formally, it holds that SaCxS

b = Sa+cCxS
b−c for any set of non-

negative integers a, b, and c ≤ b. This restriction is equivalent to Cx

and S being commutative, which implies that they have the same set of
eigenvectors. Additionally, the direction of the mean µ has to remain
unchanged after successive applications of the shift. Specifically, Sµ
has to be proportional to µ. These invariance restrictions on both the
first and second order moments lead to the following definition.

Definition 1 (WSS graph process). Let G be a graph with a graph shift
operator S. Let vm be an eigenvector of S. The graph signal x is a
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WSS graph process if it is a random vector with mean E[x] = µ and
covariance matrix Cx = E[(x− µ)(x− µ)T ] that satisfy

(i) µ = µ vm,

(ii) Cx and S are simultaneously diagonalizable.

In the case when all eigenvalues of S are distinct, Def. 1 is equiva-
lent to understanding the WSS graph process x as being generated from
a graph-filtered white sequence w [12]. Formally, x = Hw+µvm for
some graph filter H =

∑n−1
t=0 htS

t. Then, the covariance matrix can
also be written as Cx = HHT . From now on, it is assumed that all
eigenvalues are distinct.

The fact that Cx and S are simultaneously diagonalizable implies
that they have an eigendecomposition by the same unitary matrix,
Cx = Vdiag(p)VH where p =

[
p1 · · · pn

]T is a Rn vector
with nonnegative elements which are indeed the eigenvalues of the co-
variance matrix. The vector p is defined as the power spectral density
(PSD) of the WSS graph process x. Moreover, the process given by
the GFT coefficients x̃ is also WSS, has uncorrelated elements and its
covariance matrix is given by Cx̃ = diag(p) [12].

Remark 1 (Alternative definitions of WSS graph processes). There
are two other definitions of WSS graph processes. The first one, found
in [11] identifies a shift based on an isometrization of the Laplacian,
and uses this shift to impose restrictions on the first and second order
moment of the process. These restrictions are equivalent to (i) and (ii)
in Def. 1. An important observation is that the proposed shift is not local
since it involves operations between nodes that do not share an edge.
The second definition provided in [13] adopts the use of a localization
operator based on the graph Laplacian to force conditions on the first
and second moment of the graph random process. These conditions are
also equivalent to the ones in Def. 1. A major issue with this operator
is that it does not conform a mathematical group, making it senseless
to repeatedly apply this operator to the signal [16]. Furthermore, both
definitions require a Laplacian which implies the need of an undirected
graph.

2.1. The concept of mean in a graph process

In traditional signal processing, the mean is associated with the DC (or
constant) component of the signal. More specifically, it is understood
as the contribution corresponding to the zero-frequency coefficient of
the Fourier expansion (slowest time-varying eigenfunction) [17,18]. In
order to characterize the notion of the mean of a random graph signal
the concept of total variation (TV) turns out to be useful. TV measures
how much the value of the signal at each node changes with respect
to the value of the signal at its neighbors. The formal definition is as
follows [9].

Definition 2 (Total variation on a graph). Let G = (V, E ,W) be a
graph with n vertices and adjacency matrix A ∈ Rn×n, [A]k,` =
wk,`, where wk,` is the weight corresponding to the edge (k, `) ∈ E
by the weight functionW . Then, the total variation TV(x) of a graph
signal x ∈ Rn on G is defined as

TV(x) =
n∑
k=1

∣∣∣∣∣∣xk −
∑
`∈Nk

w`,k
|λmax|

x`

∣∣∣∣∣∣ =
∥∥∥∥x− 1

|λmax|
ATx

∥∥∥∥
1

(1)

where λmax is the largest eigenvalue of adjacency matrix A and serves
the purpose of normalizing the energy.

Using TV as a way of measuring the variability of a graph signal
allows us to determine which is the slowest graph-varying of all the
eigenvectors, and thus assign it to vm, the eigenvector corresponding to
the mean of the WSS process. In this respect, the following proposition
comes in handy.

Proposition 1 (Ordering of frequencies). Let λmax = rejθ ∈ C be the
eigenvalue of the adjacency matrix A with highest value |λmax| = r >
0, Re{λmax} > 0. Let λk, λ` ∈ C be two other eigenvalues. If the
eigenvalue λk is closer in the complex plane to |λmax| than λ` is, then
TV(vk) < TV(v`) where vk is the eigenvector associated to λk and
v` is the eigenvector associated to λ`.

Proof. See [9], Theorem 2.

This proposition states that the eigenvalue λmax of the adjacency
matrix A with the highest magnitude has associated an eigenvector with
the slowest total variation. From there onwards, the total variation of
the eigenvectors increase as the corresponding eigenvalues are located
farther away from |λmax|. Furthermore, for a connected graph there
exists a real nonnegative eigenvalue such that the magnitude of all other
eigenvalues does not exceed this one [19, 20]. This implies that the
eigenvalue λm corresponding to the eigenvector vm with the least total
variation is real and nonnegative.

Remark 2 (Use of the Laplacian of the graph). A popular choice of
graph shift operator in GSP is the Laplacian of a graph S = L = D−A
where D ∈ Rn×n is the diagonal degree matrix and A is the adjacency.
Besides being only useful for undirected graphs, the fact that the Lapla-
cian is a difference operator makes it useless for diffusion processes.
More specifically, note that the slowest graph-varying eigenvector of L
is indeed the constant (1/

√
n) 1, making it ideal for adoption as vm.

However, this eigenvector corresponds to the zero eigenvalue and there-
fore all successive operations of the shift do not further contribute, in
mean sense, to the estimation, E[Stx] = Stµ = (µ/

√
n)St1 = 0 for

all t = 1, 2, . . . , n− 1.

From now on, it is assumed that the graph shift operator under con-
sideration is the adjacency matrix S = A, that the eigenvalues are all
distinct λk 6= λ` whenever k 6= `, that they ordered as λ1 ≥ |λ2| ≥
. . . ≥ |λn| and that the eigenvector associated to the mean of the WSS
graph process is the one with lowest total variation vm = v1, corre-
sponding to λm = λ1 ∈ R.

3. WEAK LAW OF LARGE NUMBERS

We now study the use of the aggregated diffusion process yn =∑n−1
t=0 Stx as an estimator for the mean of the WSS process E[x] =

µ = µv1. With access to the aggregated diffusion process yn we can
obtain an unbiased estimator as

µ̂n =
1∑n−1

t=0 λ
t
1

n−1∑
t=0

Stx =
1∑n−1

t=0 λ
t
1

yn. (2)

Proposition 2 (Unbiased estimator). Given a WSS graph process x
with mean E[x] = µ = µv1, then the estimator µ̂n given in (2) is an
unbiased diffusion estimator for the mean of the process.

Proof. Simply calculate the expectation of µ̂n and recall that Sv1 =
λ1v1 because v1 is an eigenvector of S.

The unbiased diffusion estimator (2) is also a WSS process since it
results from filtering a WSS process [12]. Then, its PSD q is

qk = pk
|
∑n−1
t=0 λ

t
k|2

|
∑n−1
t=0 λ

t
1|2

, k = 1, . . . , n (3)

which leads to a covariance matrix given by Cµ̂n = Vdiag(q)VH .
Observe that for k = 1, that is, for the eigenvalue corresponding to the
mean eigenvector, we always have a PSD q1 = p1.

With the covariance matrix, performance bounds on the estimation
error can be obtained. In particular, if we look at the value of the esti-
mator in a specifc node ` we get the following Lemma.
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Lemma 1 (Error bound). Let x be a WSS graph process on a graph G
characterized by a normal graph shift operator S = VΛsV

H , Λs =
diag(λ1, . . . , λn). Let E[x] = µv1 be the mean of the process and
Cx = Vdiag(p)VH the covariance matrix, with pk < ∞ for all
k = 1, . . . , n. Then,

P
(∣∣[µ̂n − µ]`

∣∣ > ε
)
≤ 1

ε2

n∑
k=1

qk|v`,k|2. (4)

Proof. Let e` be the vector selecting node `, that is a vector with the
value 1 in position ` and zeros elsewhere. Observe that E[eH` µ̂n] = µ`
and var

[
eH` (µ̂n − µ)

]
= eH` Cµ̂ne` = eH` Vdiag(q)VHe` < ∞

since pk <∞ for all k = 1, . . . , n. Then apply Chebyshev’s inequality
[2, Theorem 1.6.4] to get (4).

The bound given in Lemma 1 is reminiscent of the basic inequality
needed to obtain the classical weak law of large numbers [2, Theorem
2.2.3]. This intuition comes from the fact if we let x be comprised of
i.i.d. random variables, then pk = 0 for all k 6= 1 making only q1
survive in (4). Thus, only |v`,k|2 remains and this value typically has
a dependence on 1/n. See the directed cycle case later in this section.
Also, observe that {v`,k, k = 1, . . . , n} are the values contained in the
`-th row of V. Interpreting this in the context of the GFT, we note that
the performance of the estimation at a single node ` depends on the
variance of all nodes and on all frequency coefficients (all eigenvalues)
of the graph shift operator, since the signal is passed over all the nodes.
Additionally, it is affected by the value of each frequency component
(each eigenvector) on node ` alone.

To push the analogy forward, we observe that (4) depends on both
qk and vk. Then, we first proceed to study the behavior of qk, which
depends on the spectrum of the graph as specified by the following
lemma.

Lemma 2 (Behavior of qk). Let G = (V, E ,W) be a weighted graph
that admits a normal graph shift operator S = VΛsV

H . Let λ1 ∈ R
be the largest positive eigenvalue such that |λk| ≤ λ1 for all k =

2, . . . , n. If λ1 > 1 and |λk|/λ1 = o(n−δ/2n) for some δ > 0, or if
λ1 = 1, then

qk = o(n−δ) , k = 2, . . . , n (5)
For k = 1 we always have q1 = p1.

Proof. Let λk = rejθ . Assume that λ1 > 1. Then, using the geometric
sum on (3)

qk = pk
|1− λ1|2

|1− λk|2
|1− λnk |2

|1− λn1 |2
≤ pk

|1− λ1|2

|1− r|2
1 + r2n

|1− λn1 |2

First observe that, since r ≤ λ1, then it always holds that |1−λ1|2/|1−
r|2 ≤ 1 so that the term is always bounded. Now, because λ1 > 1 then
|1 − λn1 |2 = O(λ2n

1 ). Likewise, if r > 1 then 1 + r2n = O(r2n) so
that

1 + r2n

|1− λn1 |2
= O

(
|λk|2n

λ2n
1

)
= o(n−δ).

If r ≤ 1, then

1 + r2n

|1− λn1 |2
= O

(
1

λ2n
1

)
= o(n−δ)

For λ1 = 1, we have that |
∑n−1
t=0 λ

t
1|2 = n2 so that

qk =
pk
n2

∣∣∣∣∣
n−1∑
t=0

λtk

∣∣∣∣∣
2

=
pk
n2

|1− rnejnθ|2

|1− λk|2

For r < λ1 = 1 we have that |1 − rnejθn|2 = O(1). If r = o(1),
then |1 − rejθ|2 = O(1) and the 1/n2 guarantees that qk = o(1/n).
If r = 1 then |1 − ejnθ|2/|1 − ejθ|2 = o(1/n) making qk = o(1/n)
completing the proof.

Lemma 2 states that, under certain conditions on the spectrum of
the graph, all terms are polynomially decreasing except for q1 = p1; it
is shown later on that these conditions hold for some practical graphs
such as the directed cycle and Erdős-Rényi graphs. We can also obtain
a rate of convergence for the probability of error that is evocative of the
classical weak law of large numbers.

Proposition 3 (Weak law of large numbers). Let x be a WSS graph
process on a graph G characterized by a normal graph shift operator
S = VΛsV

H with eigenvalues that satisfy the conditions on Lemma 2.
Then, if pk <∞ for all k, we have that

min
`=1,...,n

P
(∣∣[µ̂n − µ]`

∣∣ > ε
)
≤ p1
nε2

+ o(n−δ). (6)

Proof. First, observe that because ‖v1‖2 = 1 there is always a node `
for which |v`,1| ≤ 1/

√
n so that

min
`=1,...,n

|v`,1|2 ≤
1

n
.

Note that if the eigenvectors are highly localized, then there exists a
node ` for which v`,1 = 0. Let qmax = maxk=2,...,n{qk}. Then, from
(4) we have that

min
`=1,...,n

P
(∣∣[µ̂n − µ]`

∣∣ > ε
)
≤ 1

ε2

(p1
n

+ qmax

)
(7)

where the fact that
∑n
k=2 |v`,k|

2 ≤ 1 for all ` was used (because the
rows of V also form an orthonormal basis). Now because the eigen-
values of S satisfiy the assumptions of Lemma 2 by hypothesis and
because qmax is some value of qk for k = 2, . . . , n, then we know that
qmax = o(n−δ) thus completing the proof.

Proposition 3 is remindful of the traditional WLLN because it states
that the probability that the average of shifts is far from the mean de-
creases polynomially as the size of the graph increases. Alternatively,
if we make ε = 1/

√
n we obtain a concentration inequality by which

the average of shifts gets arbitrarily close to the mean at a rate of 1/
√
n

with constant probability.
In what follows we consider the application of Proposition 3 to

different well-known graphs.

Directed cycle (Classical WLLN). The directed cycle Gdc represents
the graph support for time-stationary signals. Then, by applying Propo-
sition 3 we expect to recover the traditional WLLN.

Corollary 1 (Convergence of Directed Cycle). Let Gdc be the directed
cycle graph. Then, for any node ` the error bound is

P

(∣∣∣∣∣ 1n
n∑
k=1

xk − µ

∣∣∣∣∣ > ε

)
≤ p1
nε2

. (8)

Proof. Note that λ1 = 1 so that Proposition 3 holds. More specifically,
qk = 0 for all k 6= 1 and v`,1 = 1/

√
n for all ` so that µ = µ1 is

the constant vector. Finally,
∑n−1
t=0 Stx =

∑n
k=1 xk1 because after n

shifts the values of the signal have been aggregated at all nodes due to
the nature of the directed cycle.

Corollary 1 is a statement of the weak LLN for signals that are sta-
tionary in time. The result in this case is stronger than the one in (6)
because it lacks the order term o(n−δ). This term vanishes because in
the case of a cycle graph the kth component of the estimator’s PSD is
qk = 0, k = 2, . . . , n. It is also stronger in that the minimum disap-
peared since, after n shifts, all nodes have aggregated the sample mean,
so any node yields the same estimator and thus the same probability of
error. Finally, note that if x are i.i.d. r.v. then the DC component of the
signal is p1 = σ2 and (8) is the Chebyshev’s bound that leads to the
classical WLLN.
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Fig. 1: Estimated probability and error bounds. (a) Probability of error for the ER graph as a function of the size of the graph; the larger the graph,
the less probability of error. (b) Probability of error for the ER graph as a function of the node selected `; every node yields the same estimation
error. (c) Probability of error for the path graph as a function of the size.

Erdős-Rényi (ER) graphs. Another family of graphs that satisfies
Proposition 3 are ER graphs. These graphs have the particularity that
the largest eigenvalue grows linearly with the size whereas the rest of
the eigenvalues have a growth rate that does not exceed

√
n. This means

that the graph is well-suited for estimation since the PSD of the esti-
mator concentrates around the largest eigenvalue corresponding to the
mean of the process. This shows in the proof of the following corollary.

Corollary 2 (WLLN for Erdős-Rényi graphs). Let GER be an ER graph
of size n with p such that pn → α ≥ 1. Then, for any node ` and any
0 < δ < n we have that

P
(∣∣[µ̂n − µ]`

∣∣ > ε
)
≤ p1
nε2

+ o(n−δ). (9)

Proof. First, note that λ1 = pn + o(n) and that by the semi-circle
law, with probability 1− o(1) all eigenvalues except the largest one lie
in the interval (−c

√
n, c
√
n) for any c > 2p(1 − p) [21, 22]. Then,

we have that λ2 ≤ c
√
n so that λ2/λ1 = o(n−δ/2n) for any 0 <

δ < n, satisfying Proposition 3. Additionally, because
√
nv`,1 = 1 +

o(n−(1/2−r)), 0 < r < 1/2 with probability 1 − o(1), see [23], then
any node ` yields similar probability of error.

Corollary 2 states that the estimator obtained at any node is arbitrarily
close to the true mean at that node, with a convergence rate that is
polynomial on the size of the graph.

3.1. Non-convergent graphs

In cases where the graph spectra does not fall under the conditions of
Lemma 2 and thus Proposition 3 cannot be applied, there are still inter-
esting analyses to make.

Lemma 3. Let G = (V, E ,W) be a weighted graph that admits a
normal graph shift operator S = VΛsV

H . Let λ1 ∈ R be the largest
positive eigenvalue such that |λk| ≤ λ1 for all k = 2, . . . , n. Let K be
the set of indices such that |λk|/λ1 does not satisfy o(n−δ/2n) for any
δ > 0. If λ1 > 1 and K is nonempty, or if λ1 < 1, then

P
(∣∣[µ̂n − µ]`

∣∣ > ε
)
≤ p1
ε2
|v`,1|2 + o(1) (10)

+
∑
k∈K

pk

∣∣∣∣ 1− λ1

1− λk

∣∣∣∣2 |v`,k|2(1 + o(1)).

If λ1 < 1, then K = {2, . . . , n}.

Proof. In analogy with the proof of Lemma 2 we prove that for the
conditions of λ1 < 1 for which K = {2, . . . , n} or for the case when
λ1 > 1 and K is nonempty, then

qk = pk

∣∣∣∣ 1− λ1

1− λk

∣∣∣∣2 (1 + o(1)) (11)

First, let k ∈ K and λk = rejθ with λ1 > 1. Then, since r/λ1

does not decrease any faster than n−δ/2n, we have

|1− λnk |2

|1− λn1 |2
=

1− 2rn cos(nθ) + r2n

1− 2λn1 + λ2n
1

= 1 + o(1).

For λ1 < 1 we have that, since r/λ1 ≤ 1 and rn = o(1) and λn1 =
o(1), then |1 − rnejθn|2 = 1 + o(1) and |1 − λn1 |2 = 1 + o(1),
completing the proof.

For the case in which λ1 < 1 we reach a fundamental limit under
which is not possible to achieve a better estimation. This situation oc-
curs because on each successive step of the diffusion process the infor-
mation harnessed from neighboring nodes is less and less (because all
the eigenvalues are less than 1), eventually making it impossible to ac-
curately estimate the mean. Alternatively, when λ1 > 1, if |K| = o(n)
then then the estimator is still consistent since at most finitely many
values of qk do not follow the rate o(n−δ). When |K| = O(n), then
no assertions about the convergence of the estimator can be done.

4. SIMULATIONS

First, we consider an ER graph with n nodes and probability p(n) =
3/n as support for a WSS graph process, for which realizations are ob-
tained. The mean is equal to the eigenvector associated to the largest
eigenvalue. An estimate of the probability of error is obtained by av-
eraging 1000 realizations. First, the size n varies from 10 to 100. For
each n, 100 different graphs are used and the error probability on all of
them is averaged. It can be observed from Fig 1a that both the bound
and the error probability (7) decrease as n increases. For the second
simulation we fix n = 100 and p = 0.03 and we analyze the bound as
a function of the node ` selected, see Fig 1b. As discussed earlier, all
nodes tend to be equal in their estimation of the mean.

We also consider a second simulation of the same WSS process de-
scribed before but now supported on a path graph. In this case λk =
2 cos(πk/(n + 1)) so that Proposition 3 is not satisfied. Also K =
O(n) so that no assertions about the bound can be made. Yet, the
simulation results in Fig. 1c show that the probability of error still de-
creases with the size of the graph. This is indicative that there is room
for obtaining better bounds or less stringent conditions on which a con-
vergence rate is achieved. This will be our focus in future works.

5. CONCLUSIONS

In the present paper, an unbiased estimator for the mean of a WSS
graph process based on the diffusion of a single realization was pre-
sented. Error bounds were obtained and convergence rates for the error
probability were provided. These results are reminiscent of the weak
law of large numbers. Specific expressions for the directed cycle and
the Erdős-Rényi graphs were obtained. Also, situations in which the
said convergence rate is not achieved were discussed.
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[12] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary
graph processes and spectral estimation,” arXiv:1603.04667v1
[cs.SY], 14 March 2016.

[13] N. Perraudin and P. Vandergheynst, “Stationary signal processing
on graphs,” arXiv:1601.02522v4 [cs.DS], 8 July 2016.
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