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ABSTRACT
We consider a problem of localizing the destination of an ac-
tivated path signal supported on a graph. An “activated path
signal” is a graph signal that evolves over time that can be
viewed as the trajectory of a moving agent. We show that
by combining dynamic programming and graph partitioning,
the computational complexity of destination localization can
be significantly reduced. Then, we show that the destina-
tion localization error can be upper-bounded using methods
based on large-deviation. Using simulation results, we show
a tradeoff between the destination localization error and the
computation time. We compare the dynamic programming
algorithm with and without graph partitioning and show that
the computation time can be significantly reduced by using
graph partitioning. The proposed technique can scale to the
problem of destination localization on a large graph with one
million nodes and one thousand time slots.

1. INTRODUCTION

Data with unstructured forms and rich types are being gener-
ated from various sources, such as social networks and the In-
ternet of Things. These data are often generated with some in-
herent correlation that can be represented using graphs. This
important feature inspired the emerging field on graph sig-
nal processing [1, 2], where signals are supported on a graph,
instead of on the Euclidean domain (e.g., time signals or im-
age signals). This key difference spurred works that aim to
generalize classical problems and techniques to graph signal
processing, including sampling [3, 4], recovery [5, 6], signal
representations [7,8], uncertainty principles [9,10], and graph
signal transforms [11–15].

In this paper, we study a special type of graph signals that
evolve over time called “path signals”. A path signal (see
Fig. 1 for details) only has non-zero value on a connected
trajectory, i.e., the signal is non-zero at only one location on
each time slot of the graph signal, and the non-zero locations
at consecutive time slots are connected on the graph. A path
signal is a perfect abstraction of a moving agent on a graph,
where the non-zero location of the path signal at a particular
time slot represents the location of the moving agent at time
t. Thus, the study of path signals is deeply related to the liter-
ature of tracking and surveillance [16–19]. Here, we study
the path signal on large-scale graphs from the perspective
of graph partitioning and graph signal dimension reduction.

Due to the increasing size of graphs, many graph partitioning
and graph signal dimension reduction techniques have been
proposed, which include community detection and clustering
on graphs [20–23], and signal coarsening on graphs [24–26].
These newly proposed techniques and related ideas have pro-
vided great improvements in computation speed and storage
cost for algorithms on large-scale graphs, including PageR-
ank [27], graph generation [28] and graph semantic summa-
rization [29]. Here, we use dimension reduction techniques
in signal tracking, with the specific focus on path signals.

We consider the problem of “destination localization” for
a path signal on a large-scale graph. The aim is to estimate
the final position of the moving agent from noisy observa-
tions of the path signal. We measure the accuracy of destina-
tion localization using the Euclidean distance in the real space
where the graph is embedded in (i.e., a geometric graph).
First, we propose to use dynamic programming to obtain an
estimate of the destination of the path signal on the original
graph. Then, we propose to use graph partitioning techniques
to divide the graph into small communities and reduce the
graph size by merging one community into one “super-node”.
Then, we carry out dynamic programming algorithms on a
graph formed by these super-nodes and significantly reduce
the number of states in dynamic programming, and hence im-
prove the computation time. Using a large-deviation-based
technique, we provide an upper bound on the error of the des-
tination localization which can be computed in polynomial
time for general graphs and general non-overlapping graph
partitioning algorithms. Finally, we test this fast dynamic pro-
gramming technique both on random geometric graphs and a
real graph called AS-Oregon [30]. Our algorithm shows sig-
nificant speedup compared to dynamic programming without
graph partitioning, and it obtains comparable localization er-
ror. In MATLAB simulations, the proposed technique can
scale to the path localization problem on a graph with one
million nodes and with one thousand time slots.

The proposed path localization problem does not only ap-
ply to tracking problems, but also applies to road congestion
monitoring and satellite searching. A signal path on a road
network can be viewed as a slowly moving congested seg-
ment on the graph formed by roads and intersections. A sig-
nal path in satellite searching can be viewed as the trajectory
of a moving plane debris or a small refugee lifeboat in the
sea, while the observation noise may come from the satellite
inaccuracy and the bad illumination condition at night.
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Fig. 1. This figure illustrates a path signal on a graph with
five nodes. The nodes with non-zero signal value form a con-
nected path (green dashed line). For example, the activated
node at time t = 1 is v1 = A and the activated node at time
t = 2 is v2 = B. For the signal to be a path signal we require
(v1, v2) ∈ E . A path signal can be viewed as an abstraction
of a moving agent on a graph.

2. SYSTEM MODEL: PATH SIGNAL AND PATH
LOCALIZATION

Denote by G = (V, E) an undirected graph with n nodes.
Assume time is slotted. Suppose xt, t = 1, 2, . . . , T is a
fixed series of (non-random) signals supported on the graph
G = (V, E) that evolve over time. The value xt(v) denotes
the signal value at time t and at node v. At each time slot,
there is one node vt such that xt(vt) = µ and xt(v) = 0
for all other nodes v 6= vt. The collection of the nodes
(v1, v2, . . . , vT ) is a connected path, i.e., (vt, vt+1) ∈ E for
all t = 1, 2, . . . , T − 1. We use p0 to denote this connected
path and call it the “true path” on the graph G = (V, E). The
true path p0 = (v1, v2, . . . , vT ) can represent the trajectory
of the moving agent on the graph G = (V, E) from time t = 1
to time t = T . Assume that we observe the fixed graph signal
xt, t = 1, 2, . . . , T from the observation model

yt = xt +wt, t = 1, 2, . . . , T, (1)

where the noise wt ∼ N (0, σ2 I). Our goal is to estimate
the final position vT of the path signal (v1, v2, . . . , vT ) on
the graph G = (V, E) with elevated mean µ from the noisy
observations yt, t = 1, 2, . . . , T . We define the sum weight
on an arbitrary path p = (v1, v2, . . . , vT ) ∈ VT as

S(p) =

T∑
t=1

yt(vt). (2)

Intuitively, a path with a higher sum weight should be more
likely to be the true path p0. To see this, we have

Pr ((y1, . . . ,yT ) |P) =
T∏

t=1

exp

(
− 1

2σ2
‖yt − xt‖22

)

= exp

(
− 1

2σ2

T∑
t=1

‖yt − xt‖22

)
.

Then,

argmax
P

Pr ((y1, . . . ,yT ) |P) = argmin
P

T∑
t=1

‖yt − xt‖22

=argmax
P

T∑
t=1

yt · xt = argmax
P

T∑
t=1

µyt(vt).

2.1. Dynamic Programming for Path Signal Localization

In Algorithm 1, we describe a dynamic programming algo-
rithm to compute the path with the maximum sum weight.
This algorithm is also known as the Viterbi decoding algo-
rithm [31] in the specific context of convolutional decoding.
The basic idea of Algorithm 1 is to record the path with the
largest weight that ends all nodes v at each time slot t in the
graph G for all time slots t = 1, 2, . . . , T . Although the pos-
sible number of paths is exponential in t, algorithm 1 only
has computational complexity O(nT ), because only the op-
timal path, instead of all paths, that ends at a node v has to
be recorded at each time t. However, the computational com-

Algorithm 1 Dynamic Programming for Path Localization
INPUT: A graph G and observations yt, t = 1, 2, . . . , T .
OUTPUT: A connected path p̂ = (v̂1, v̂2, . . . , v̂T ).
INITIALIZE
Use sv,t to denote the sum weight until time t at node v. Use
pv,t to denote the path with the largest weight of length t that
ends at node v. Initialize pv,1 = v for all v ∈ V .
FOR t=2 : T

• For all nodes v in V , find the path pu,t−1 with the
largest sum weight S(pu,t−1) for all nodes u in the
neighborhood N (v);

• Update pv,t = (pu,t−1, v) for all v ∈ V .

END
Denote by pv∗,T the path with the largest sum weight in all
paths of length T . Output p̂ = pv∗,T .

plexity O(nT ) can still be high for a large graph and large
overall time T , which motivates us to design algorithms that
may not output the exact estimate, but have low computa-
tional complexity (see Section 3). Thus, we first define an
error metric for the destination localization problem.

Definition 1. The destination distance DF (p1,p0) between
the estimated path p1 = (v̂1, v̂2, . . . , v̂T ) and the true path
p0 = (v1, v2, . . . , vT ) is defined as the distance d(v̂T , vT )
between the two nodes v̂T and vT , where d can be any dis-
tance measure defined for the graph G, such as the Euclidean
distance in the real space where the graph is embedded in (i.e.,
a geometric graph).

3. REDUCED-STATE DYNAMIC PROGRAMMING
ON PARTITIONED GRAPHS

In this section, we describe a new way of doing path desti-
nation localization with graph partitioning and graph signal
dimension reduction. The main idea is to first partition the
graph into communities [32] and then localize the path on the
graph formed by the communities1.

1In this paper, we only apply existing graph partitioning algorithms such
as [23]. The study of the optimal graph partitioning algorithm with low com-
plexity is a very meaningful future work.
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Fig. 2. The graph on the right is an illustration of the commu-
nity graph. In the original graph G, we partition the nodes into
non-overlapping communities. Then, we shrink each commu-
nity to one “super-node” and connect two super-nodes if there
exist two connected nodes in the corresponding two commu-
nities. Note that the community graphs may have self-loops.

Suppose we partition the nodes of the graph G = (V, E)
into m non-overlapping communities

V =

m⋃
i=1

Vi. (3)

Then, we shrink each community into a “super-node” and
construct a graph formed by these super-nodes. We use Gc =
(Vc, Ec) to denote the new graph, where Vc with cardinality
m is the set of “super-nodes”, and two nodes Vi and Vj are
connected if there exists two nodes vi ∈ Vi and vj ∈ Vj such
that (vi, vj) ∈ E in the original graph G. We call the graph Gc
the community graph (see Fig. 2).

Consider the same observation model in (1) on a general
graph G = (V, E) such that xt(vt) = µ and xt(v) = 0 for v 6=
vt, and (v1, v2, . . . , vT ) is a connected path in G. Suppose we
use a graph-partitioning algorithm and obtain the community
graph Gc = (Vc, Ec). We use a coarsened [24–26] version
ut (graph signal dimension reduction) of the original graph
signal observation yt as the graph signal on the community
graph. The coarsened graph signal is defined as

ut(Vi) = max
v∈Vi

yt(v), i = 1, 2, . . . ,m. (4)

Then, we use the same dynamic programming algorithm as
Algorithm 1 to obtain an estimate of the trajectory of the path
signal on the community graph.

Remark 1. Note that after graph partitioning, the sum weight
maximization does not equal to the MLE. However, we still
obtain a numerical method to iteratively compute an upper
bound on the expectation of the destination distance between
the true path and the path estimate on the community graph
Gc (see Section 3.1). Note that our algorithm and bound apply
to worst-case path signals and graph partitioning, which is
different from the Bayesian settings in [18, 19].

3.1. A Numeric Method for Computing an Upper Bound
on the Localization Error

Denote by P0 = (V1,V2, . . . ,VT ) the true path in the com-
munity graph, and denote by P̂ = (V̂1, V̂2, . . . , V̂T ) the path
estimate. Note that for some t, the two paths may overlap,

Algorithm 2 Coarsened Dynamic Programming for Path Lo-
calization
INPUT: A coarsened graph Gc = (Vc, Ec) and coarsened
graph signal observations ut, t = 1, 2, . . . , T .
OUTPUT: A connected path p̂ = (V̂1, V̂2, . . . , V̂T ) on the
community graph.
Call Algorithm 1 with inputs Gc = (Vc, Ec) and ut, t =
1, 2, . . . , T .

i.e., V̂t = Vt. Denote by ST the sum weight of the true path
P0 in the community graph, and denote by Sc the sum weight
on the path estimate P̂ in the community graph. Then,

Sum weight on the true path P0: ST =

T∑
t=1

ut(Vt), (5)

Sum weight on the path estimate P̂: SC =

T∑
t=1

ut(V̂t). (6)

In Algorithm 2, we select the path with the maximum sum
weight. Therefore, we will choose the path estimate P̂ with
sum weight SC instead of the true path P0 with sum weight
ST , only if SC ≥ ST . This event happens with exponen-
tially low probability because the signal on the true path has
a shifted mean value µ > 0, while the signal on P̂ has mean
value 0 when the two paths do not overlap.
Lemma 3.1. The probability that the sum weight SC on any
path P̂ = (V̂1, V̂2, . . . , V̂T ) is greater or equal to the sum
weight ST on the true path can be upper bounded by

Pr(SC ≥ ST ) ≤
∏
t∈S

exp

(
− µ2

4σ2

)
|V̂t|, (7)

where S ⊂ {1, 2, . . . , T} is set of time slots when V̂t 6= Vt.
Using Lemma 3.1, we immediately obtain the following

result on the destination distance defined in Definition 1.
Theorem 3.1. The expectation of the destination distance be-
tween the path estimate and the true path measured on the
community graph is upper bounded by

E
[
DF (P0, P̂)

]
≤

∑
All possible paths P̂ = (V̂1, V̂2, . . . , V̂T )d(VT , V̂T ) ∏

t∈S(P̂)

exp

(
− µ2

4σ2

)
|V̂t|

 , (8)

where S(P̂) ⊂ {1, 2, . . . , T} is the set of time t when V̂t 6=
Vt, and d(VT , V̂T ) is the distance metric between the two
super-nodes VT and V̂T in the community graph.

Proof in Sketch The proof can be obtained by directly
upper-bounding Pr(P̂ is chosen as the estimate) with (7) in
the following decomposition.

E
[
DF (P0, P̂)

]
=

∑
All possible paths P̂

Pr(P̂ is chosen)DF (P0, P̂).

(9)
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Fig. 3. Simulation results on the destination distance between
the path estimate and the true path for different number of
communities (super-nodes).
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Fig. 4. Computation time of one step in Algorithm 2 versus
the number of communities in the graph partitioning.

Since there are exponential number of possible paths in T
time slots, one may think that the bound is not computable.
However, the special structure of the bound (a sum-product
structure) makes it computable in polynomial time.

Theorem 3.2. The upper bound on the expected destination
distance in (8) can be computed in time O(mT ), where m is
the number of nodes in the community graph Gc = (Vc, Ec),
and T is the number of time slots.

4. SIMULATION

First, we test the algorithm on a random geometric graph with
20000 randomly generated nodes that are distributed accord-
ing to the Poisson point process on a square area with length
1. Two nodes are connected if they are within distance 0.02.
Then, we partition the square areas into m sub-squares us-
ing direct square partitioning and merge the nodes in each
square into one “super-node”. The number of communities
can be m = 400, 900 or 2500. After that, we generate a ran-
dom walk on the graph to represent the positions of a moving
agent and use Algorithm 2 to estimate the final position of the
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Fig. 5. Performance comparison between dynamic program-
ming with and without graph partitioning on AS-Oregon
graph.

path signal from Gaussian observation noise. The destination
distance error metric d(·, ·) in Definition 1 is defined as the
Euclidean distance on the square area.

The result in Fig. 3 shows the destination localization er-
ror versus the signal to noise ratio µ/σ with different number
of communities in the graph partitioning stage. We also in-
clude one simulation for a geometric graph with one million
nodes and 2500 communities. The result in Fig. 4 shows the
computation time of one step in the FOR-loop in Algorithm 1
when the number of communities differ. We can see from
Fig. 3 that when the number of communities increases, the
localization error decreases, while the computation time in-
creases. In practice, one should find the optimal number of
communities to obtain a tradeoff between computation time
and destination localization error.

Then, we test our algorithm on the AS-Oregon graph of
Autonomous Systems (AS) peering information inferred from
Oregon route-views [30]. We use Slashburn [23], which is a
partitioning algorithm with interleaving stages of node order-
ing with node-centrality (slash) and removal of edges con-
nected to high-centrality nodes (burn), to speed up the com-
putation time. The result on the localization error versus the
signal to noise ratio µ/σ is shown in Fig. 5. The computa-
tion time of one step of dynamic programming with and with-
out graph partitioning (i.e., Algorithm 2 and Algorithm 1) are
respectively 0.0085 seconds and 3.5344 seconds. Note that
the destination distance (Euclidean distance) here does not
have a specific meaning, so we use the Hamming distance
DH(P0, P̂) =

∑
t=1 1(V̂t 6= Vt) instead.

5. CONCLUSIONS

In this paper, we study the problem of localizing the final po-
sition of a path signal on a large-scale graph. The proposed
technique reduces the complexity of dynamic programming
using graph partitioning. A meaningful future work is to
study the effect of applying different low-complexity parti-
tioning algorithms to the same path localization problem.
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