
FAST IMPLEMENTATION FOR SYMMETRIC NON-SEPARABLE TRANSFORMS BASED
ON GRIDS

Keng-Shih Lu and Antonio Ortega

Department of Electrical Engineering, University of Southern California, Los Angeles, USA

ABSTRACT

When a line graph is symmetric, the associated graph Fourier trans-
form has a fast implementation. In this paper, we extend this idea
to the 2D non-separable case, where the graph of interest is a
square-shaped grid. We investigate a number of symmetry types
for 2D grids. Then, for each type of symmetry we derive a block-
diagonalization form of the graph Laplacian matrix, based on which
fast implementations with reduced number of multiplications can
be obtained. We show that for moderate block sizes, certain types
of grid symmetry enable us to design non-separable block trans-
forms that have computational complexities comparable to those of
separable ones.

Index Terms— Non-separable transforms, bisymmetric matrix,
fast implementation, graph Fourier transform

1. INTRODUCTION

In transform coding schemes [1], a linear transformation is applied to
eachN ×N image/video block, to obtainN2 transform coefficients.
The Karhunen-Loeve Transform (KLT) is a well-known transform
that achieves an optimal energy compaction, but it is data-driven and
non-separable, limiting its practical use. Instead, the separable dis-
crete cosine transform (DCT) [2] is widely used for video coding
because of its fast implementations and good energy compaction.
Another separable transform, the asymmetric discrete sine transform
(ADST) [3] is used for encoding intra residual video blocks. While
separable transforms are adopted because they have lower computa-
tional complexity, non-separable designs offer additional flexibility
in shaping the corresponding basis functions and thus can potentially
provide a higher compression gain, in particular for blocks that in-
clude diagonal structures.

In graph signal processing [4, 5], inter-sample relation is charac-
terized by edge weights in a graph. The corresponding graph Fourier
transform (GFT) can be defined using the associated graph Laplacian
matrix. Mathematical models or heuristics can be used to design a
graph whose GFT can match the properties of a given data set. In
particular, 2D grid graphs have been proposed to model image data,
leading to non-separable transforms for pixel blocks, derived from
the corresponding GFTs. Examples of such graph based transforms
(GBTs) include [6, 7, 8], which target compression of images con-
taining various types of sharp discontinuities (edges). In addition,
indeed, both the DCT and the ADST can be interpreted as the GFTs
of line graphs [2, 3] (i.e., grid graphs in 1D).

Computational complexity of GFTs based on non-separable 2D
grids can be significant because it can lead to interest in the devel-
opment of fast algorithms for such transforms. In [9], a rotation-
based speedup technique was proposed, which computes a number

This work was supported in part by NSF under grant CCF-1410009.

of rotation angles in a stage-by-stage manner to derive fast imple-
mentations. In [10], the Flexible Approximate MUlti-layer Sparse
Transforms (FAµST) was proposed to solve a sparse factorization
problem that gives an approximate GFT with fast implementation.
Both approaches apply to general GFTs for 2D grids, but they have
certain limitations. In particular, in [10], the search for jointly op-
timal angles becomes impractical when the transform size is large.
In FAµST, the fast GFTs are not exact, and the acquisition of such
transforms relies on a proximal algorithm in [11].

In our recent work [12], we showed that the GFT for a line
graph has a fast implementation if the graph is symmetric. In this
paper, our goal is to obtain fast implementations based on grid sym-
metries by extending the idea in [12] from 1D line graphs to 2D
non-separable grids. We investigate several types of grid symme-
try: UD/LR-symmetry, centrosymmetry, diagonal and anti-diagonal
symmetries, and cases with multiple symmetries. For each symme-
try type, we exploit the corresponding properties of the Laplacian
matrix, then derive speedup techniques using node reordering and
Kronecker product. As opposed to previous methods [9, 10], we fo-
cus on graphs with specific symmetry properties, and analytically
derive factorization forms that lead to speedups. We show that in
those cases, exact GFTs with analytic representations in terms of the
corresponding Laplacian matrices can always be obtained without
searching parameters or using other solvers.

2. PRELIMINARIES

In graph signal processing, nodes of the graph are associated to sam-
ples of the signal to be processed, and each edge describes the inter-
sample relation of the two corresponding nodes. Given a signal x
with N samples and N is even, we denote the graph by G(N ,E),
whereN = {1, . . . ,N} and E represent the sets of nodes and edges.
The generalized Laplacian matrix of graph G is defined as L = S +
D −W, where S, D and W denote the self-loop, degree, and ad-
jacency matrices of G, respectively. The GFT is defined using the
eigendecomposition of the Laplacian matrix: given a graph signal
x, its GFT coefficients are UTx, where U is the eigenmatrix of the
associated graph Laplacian matrix. We refer to U as the GFT matrix.

We will frequently use the two following matrices:

JN =

⎛

⎜

⎝

1
⋰

1

⎞

⎟

⎠

, KN =
1
√

2
(
IN/2 −JN/2
IN/2 JN/2

) , (1)

where IN is the N ×N identity matrix and JN is the N ×N order-
reversal permutation matrix. The sizes of I, J, and K are indicated
by their subscripts. When L is an N2

× N2 matrix, we denote its
N×N block-partition representation by L = (Li,j)i,j=1,...,N , where
Li,j is the (i, j)-th N ×N subblock of L.

4109978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

T1T1

T2T2

-

-

-

-

x0x0

x1x1

x2x2

x3x3

x4x4

x5x5

x6x6

x7x7

X0X0

X2X2

X4X4

X6X6

X1X1

X3X3

X5X5

X7X7

Fig. 1: GFT implementation when L is bisymmetric and 8×8. Com-
ponents T1 and T2 are 4×4 transforms whose basis functions are the
columns of JN/2E1/

√

2 and E2/
√

2, where E1 and E2 are eigen-
matrices of A ∓ JN/2C, as in Theorem 2.

Definition 1 (Symmetries of vectors and matrices). An N × 1 vec-
tor v is called symmetric if vi = vN−i+1 for i = 1, . . . ,N , and
skew-symmetric if vi = −vN−i+1 for i = 1, . . . , n. An N × N
matrix Q is centrosymmetric (symmetric about the center) if qi,j =
qN−i+1,N−j+1. If Q is symmetric and centrosymmetric, then qi,j =
qj,i = qN−i+1,N−j+1 = qN−j+1,N−i+1. In this case, Q is called bisym-
metric.

Theorem 2 ([13, 14]). LetN be even. AnN ×N matrix L has a set
of N linearly independent eigenvectors that are either symmetric or
skew-symmetric if and only if L is centrosymmetric. In particular,
if L is bisymmetric, it can be block-diagonalized by KN :

L =KT
N (

A − JN/2C O
O A + JN/2C

)KN , (2)

where A and C are top-left and bottom-left N/2 ×N/2 block ele-
ments of L: Ai,j = Li,j , Ci,j = LN/2+i,j , i, j = 1, . . . ,N/2.

Corollary 3 ([12]). Let L be a bisymmetric graph Laplacian matrix,
then it can be derived from (2) that the corresponding GFT can be
realized using a butterfly operation followed by two parallel N/2 ×
N/2 matrix transforms on x, as shown in Fig. 1. This reduces the
number of multiplications by half as compared to a general N ×N
matrix product.

3. GFTS WITH SYMMETRIC 2D GRIDS

Symmetric structures of grids are useful for several reasons. Firstly,
as we have explored in [12] and stated in Corollary 3, structural sym-
metry of 1D line graphs (edges and self loops) is favorable because
it allows an acceleration of GFT using a butterfly stage. Here, we
are interested in how symmetries of 2D grids can be exploited to
provide speedups similar to those in the 1D case. Secondly, it can
be observed that symmetric grids occur in real-world data. For ex-
ample, Fig. 2 shows graphs estimated from inter-pixel correlation
of 8 × 8 residual blocks under two scenarios of predictive coding in
HEVC [15]. The graphs are learned using a recently proposed graph
Laplacian matrix estimation algorithm [16]. It can be shown that the
GFT corresponding to one such data-driven graph is an approxima-
tion to the KLT for the data and thus can lead to efficient compres-
sion. We observe that the weights in Fig. 2(a) are nearly up-down
and left-right symmetric, and those in Fig. 2(b) are nearly symmet-
ric around both diagonals. Fig. 2(c) shows a few blocks among those
used to generate Fig. 2(b). We observe that those data from the Bas-
ketballDrill video, have many diagonal-oriented edges. This yields

(a) (b)

(c)

Fig. 2: Estimated inter-pixel correlations in residues of (a) 8 × 8
blocks that are intra-predicted by planar mode in ParkScene video,
and (b) 8 × 8 inter-predicted blocks in BasketballDrill video. (c)
Randomly chosen sample blocks from those generating (b).

(a) (b)

Fig. 3: (a) The axis/point of symmetry for each grid symmetry type.
(b) Relationship among types of grid symmetries.

the edge patterns in Fig. 2(b), where the graph weights are larger
(higher correlation) in the direction top-left to bottom-right.

Definition 4 (Symmetries of 2D grids). For a grid G, the notion
of symmetry can be defined in multiple ways. We give those sym-
metries the following names: a) UD-symmetry (up-down), b) LR-
symmetry (left-right), c) centrosymmetry, d) diagonal symmetry, e)
anti-diagonal symmetry1. Those symmetries arise if all the edges
and self loops of G are symmetric about the following structures:
a) central horizontal axis, b) central vertical axis, c) center of the
grid, d) the northwest-to-southeast diagonal, and e) the northeast-to-
southwest diagonal. G is called UDLR-symmetric if it is UD- and
LR- symmetric, bidiagonal symmetric if it is diagonally and anti-
diagonally symmetric, and pentasymmetric if it satisfies all of a) to
e). For each symmetry type, the axis/point of symmetry is shown in
Fig. 3(a), and the degree of freedom is listed in Table 1. The inter-
relation among those symmetries can be visualized in Fig. 3(b).

Our objective is to find butterfly-based speedup techniques by
exploiting grid symmetries as follows. With an N × N grid of a

1For matrices, the (main) diagonal and the anti-diagonal refer to the
northwest-to-southeast and the northeast-to-southwest diagonals. Here, we
extend those terms to the grid case.

4110

given symmetry, we would like to express its Laplacian matrix L in
the form L =HRHT (as an extension of (2)) such that

1. H is orthogonal, and each column of H is a constant multiple
of a vector whose entries are 0, 1, or -1. That is, H =GHDH

with diagonal DH, and GH ∈ {0,1,−1}N×N has orthogonal
columns. One example of such matrix is diag(I2, K6).

2. R is a block-diagonal matrix (as the matrix in the middle of
(2)), which we would like to be as close as possible to diago-
nal (i.e., having many smaller blocks is preferable).

With such factorization, each GFT matrix can be represented by
GHDHUR, where UR is the eigenmatrix of R. Note that mul-
tiplying GH does not require any multiplications, and DHUR has
the same block diagonal structure as R does; thus, the number of
multiplications is reduced. The closer R is to diagonal, the more
sparse DHUR is, and the fewer multiplications are required. In
what follows, we focus on how block-diagonal forms are obtained
and what the butterfly-related matrices (H’s) are. We leave out the
forms of R’s since they require lengthy notations, and are trivial to
derive given the associated H’s.

In a grid, there are also multiple ways to determine the order of
nodes, i.e., the one-to-one mapping between 2D coordinates (1,1),
(1,2), . . . , (N,N) and vertex indices v1,. . . , vN2 . In this paper,
we use a fixed (column-first) vertex ordering, shown by the numbers
in Fig. 3(a), for Laplacian matrix L. Note that we will be choosing
symmetry-specific permutations to reorder the nodes such that good
symmetry properties of Laplacian matrices emerge. Such reordering
is allowed because it does not change the connectivity of the graph,
and the associated permutation matrix can be absorbed into H.

3.1. Block-diagonalization of Laplacian matrices

A centrosymmtric grid has a bisymmetric Laplacian matrix. This
arises from the fact that for each i, node i and node N2

+ 1 − i are
centrosymmetric nodes with respect to each other. The associated
bisymmetric L can be block-diagonalized by KN2 .

Then, we consider UD- and LR- symmetries. We note that the
entry (Li,j)kl is associated to the edge between the k-th node of
column i and the l-th node of column j. If L is LR-symmetric,
the weight of this edge must be identical to that between the k-th
node of column N + 1 − i and the l-th node of column N + 1 − j,
yielding (Li,j)kl = (LN+1−i,N+1−j)kl. As a result, we have Li,j =
LN+1−i,N+1−j for all i, j, which is a subblock version of matrix
centrosymmetry. We can block-diagonalize L by using the block
version of (2), with the K matrix replaced by HLR = KT

N ⊗ IN .
The UD-symmetric case can be regarded as a flipped (permuted)
version of the LR-symmetric case. Therefore, HUD can be deter-
mined by a row-first reordering PUD (shown in Fig. 4(a)) followed
by HLR. When L is associated to a UDLR-symmetric grid, the finest
block-diagonalization can be obtained by cascading HLR and HUD

followed by a node permutation:

Pδ = (πi,j)i,j=1,...,2N⊗IN/2, πi,j = {
δi,2j−1, 1 ≤ j ≤ N
δi,2(j−N), N < j ≤ 2N

Unlike the above symmetry types, a diagonally or anti-diagonally
symmetric grid in general does not have a bisymmetric Laplacian
matrix; in fact, such matrix in general cannot be made bisymmet-
ric by any node reordering. However, diagonal and anti-diagonal
symmetries can still be exploited using our proposed reordering
technique as illustrated in Fig. 4(b)(c): we scan the elements on the
axis of symmetry followed by the other two separated regions using
a zigzag path. For the diagonal symmetric case, in the resulting

(a) (b)

(c) (d)

Fig. 4: Vertex reordering by horizontal or zigzag scanning for types
of grid symmetries. (a) UD-symmetry. (b) Diagonal symmetry.
(c) Anti-diagonal symmetry. (d) Bidiagonal symmetry. The new
order is determined by the order of nodes met by the indicated
paths, ordered by the circled numbers. These figures characterize
the permutation matrices PUD, PDS, PAS, and PBS, respectively.
For example, based on (d), PBS is obtained by: I64=eye(64);
P BS=I64(:,[1,10,19,28,29,22,15,8,57,50,...]);
in MATLAB implementation. Note that (a), (b), and (c) can be
generalized to any size N , but (d) is only valid for even N .

permuted matrix PT
DSLPDS, the first N rows/columns correspond to

diagonal nodes in the grid, and the rest correspond to other nodes.
With this ordering, the diagonal symmetry leads to symmetry prop-
erties in block elements of PT

DSLPDS:

PT
DSLPDS =

⎛

⎜

⎝

A B BJm
BT C JmFJm

JmBT F JmCJm

⎞

⎟

⎠

, (3)

where m = (N2
−N)/2, A has size N ×N , and C has size m×m.

Then, we choose a matrix, diag(IN ,KT
N2−N), to deduce a favorable

similar matrix to L:

diag(IN ,K
T
N2−N)

TPT
DSLPDS diag(IN ,K

T
N2−N)

=

⎛

⎜

⎝

A O
√

2B
O C − JmF O

√

2BT O C + JmF

⎞

⎟

⎠

(4)

= Pα

⎛

⎜

⎝

C − JmF O O

O A
√

2B

O
√

2BT C + JmF

⎞

⎟

⎠

PT
α , (5)

where Pα is a properly chosen permutation matrix according to (4).
Based on (5), we obtain the form of HDS as shown in Table 1. The
middle matrix in (5) is the desired block-diagonal matrix R, whose
nonzero block elements have lengths (N2

−N)/2 and (N2
+N)/2.

This matrix is only slightly less sparse than that of the bisymmetric

4111

Table 1: Types of grid symmetries and their speedup techniques for different types of non-separable transforms onN×N grids. N is assumed
to be even. Self loops are counted into the degrees of freedom. The grids are non-separable if not specified. The numbers of multiplications
are evaluated by counting the number of nonzero elements in R’s.

Grid Type & Degrees of Freedom Proposed H Lengths of nonzero subblocks of R # Multiplications
No symmetry (N4

/2+N2
/2) N/A N2 N4

Centrosymmetry (N4
/4+N2

/2) KT
N2 N2

/2, N2
/2 N4

/2

UD-symmetry (N4
/4+N2

/2) PUD (K
T
N ⊗ IN) N2

/2, N2
/2 N4

/2

LR-symmetry (N4
/4+N2

/2) KT
N ⊗ IN N2

/2, N2
/2 N4

/2

UDLR-symmetry (N4
/8+N2

/2) (KT
N ⊗ IN)PUD (K

T
N ⊗ IN)Pδ N2

/4, N2
/4, N2

/4, N2
/4 N4

/4

Diagonal sym. (N4
/4+3N2

/4) PDS diag(IN , KT
N2−N)Pα (N2

−N)/2, (N2
+N)/2 N2

(N2
+1)/2

Anti-diagonal sym. (N4
/4+3N2

/4) PAS diag(IN , KT
N2−N)Pα (N2

−N)/2, (N2
+N)/2 N2

(N2
+1)/2

Bidiagonal sym. (N4
/8+3N2

/8+3N/4)
PBS diag(KT

2N , K
T
N2−2N)

⋅ diag(I2N , I2 ⊗KT
N2/2−N)Pβ

(N2
−2N)/4, N2

/4, N2
/4,

(N2
+2N)/4

N2
(N2

+2)/4

Pentasymmetry (N4
/16+N2

/2) see (6) below
(N2

−2N)/8, (N2
−2N)/8, N2

/4,
N2
/4, (N2

+2N)/8, (N2
+2N)/8

N2
(3N2

+4)/16

Separable, no symmetry (N2
+N) N/A N 2N3

Separable, UDLR-sym. (N2
/2) KT

N for both directions N/2, N/2 N3

Hpenta = PBS diag(KT
2N ,K

T
N2−2N)diag(I2N , I2 ⊗KT

N2/2−N)diag(IN ,K
T
N ,K

T
N2/4−N/2, IN2/2−N ,K

T
N2/4−N/2)Pγ (6)

Table 2: Percentages of residual blocks that have high absolute val-
ues of correlation (>0.7) with their flipped versions. The blocks are
chosen from selected intra-prediction modes in Kimono1 video.

Mode UD LR Centro Diag. Anti-diag.
HOR 9% 15% 10% 7% 10%
VER 13% 10% 12% 10% 12%

VER+8 10% 13% 19% 18% 19%

case, meaning that the computational saving is comparable to those
of UD-, LR-, and centrosymmetric cases. For anti-diagonal symme-
try, (3) and (5) apply with PDS replaced by PAS.

For bidiagonally symmetric and pentasymmetric grids, we pro-
pose another zigzag scanning as shown in Fig. 4(d) to exploit the
symmetry properties. The associated H’s can be obtained based on
similar techniques as in (5). Our results are summarized in Table
1, where the permutation matrices Pβ and Pγ are determined sim-
ilarly to the case of Pα. A MATLAB toolbox is available at [17],
which provides block diagonalization results given a Laplacian ma-
trix with known symmetry type as input. That each proposed H
satisfies the desired conditions (i.e., H =GHDH) has been verified
numerically. Those analytic proofs not included here require lengthy
notations, and are left for future work due to lack of space.

4. DISCUSSION

Table 1 shows the H’s and numbers of multiplications associated to
speedup techniques for various symmetries. In particular, UDLR-
and bidiagonal symmetries enable us to use two butterfly stages, re-
ducing the number of multiplications from N4 to (approximately)
N4
/4. Note that when N ≤ 8, this number is smaller or comparable

to 2N3, the number of multiplications required by general separable
transforms. If the grid is pentasymmetric, the non-separable trans-
form can be accelerated further. In addition, non-separable trans-
forms generally have many more degrees of freedom than separable

ones. Thus, using a non-separable symmetric graph may be more ef-
ficient than using separable graphs, even if the data does not always
match exactly the symmetries we introduce here.

Non-separable transform with fast implementations can be ap-
plied based on data-driven or heuristic approaches. As discussed ear-
lier, particular real-world data are associated to grids that are nearly
symmetric, based on which computationally efficient GFTs can be
derived. In addition, symmetry of grids is related to symmetry of
blocks, so it is possible to design useful GFTs heuristically based
on block symmetries. In Table 2 we show the percentages of nearly
symmetric residual blocks from a number of intra-prediction modes.
The residual blocks are extracted from Kimono1 video using HEVC
test model HM-16.9. The degrees of symmetry are measured by the
absolute values of correlation between each block and its flipped ver-
sions (using corresponding axes/points of symmetry). Note that 36%
of all the blocks considered in this experiment exhibited at least one
kind of symmetry. This significant percentage for which block sym-
metries occur indicates that some 2D GFTs with symmetric grids are
potentially useful. Future work will focus on how to identify such
subsets of blocks, especially those with diagonal/anti-diagonal sym-
metry types, where we expect to gain more compression rates from
non-separable transforms as compared to separable ones.

5. CONCLUSIONS

In this paper, we have explored various types of symmetry for 2D
grids and discussed how block-diagonalization of the associated
Laplacian matrices can be achieved. In particular, we have shown
how diagonal symmetries can be exploited by using diagonal-first
vertex reordering. We have summarized speedup techniques by
showing relevant matrices H’s and their resulting numbers of mul-
tiplications in Table 1, in which the reduced numbers of multiplica-
tions can also be compared with separable cases. Finally, we have
discussed potential schemes for applications based on data-driven
procedure or heuristics.

4112

6. REFERENCES

[1] V. K. Goyal, “Theoretical foundations of transform coding,”
IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 9–21,
Sep 2001.

[2] G. Strang, “The Discrete Cosine Transform,” SIAM Rev., vol.
41, no. 1, pp. 135–147, 1999.

[3] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly opti-
mized spatial prediction and block transform for video and im-
age coding,” IEEE Trans. Image Process., vol. 21, no. 4, pp.
1874–1884, Apr 2012.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing
on graphs,” IEEE Signal Process. Mag., vol. 30, no. 3, pp.
83–98, 2013.

[5] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp.
1644–1656, 2013.

[6] G. Shen, W.-S. Kim, S. Narang, A. Ortega, J. Lee, and H. Wey,
“Edge-adaptive transforms for efficient depth map coding,”
Picture Coding Symposium (PCS), pp. 566–569, 2010.

[7] W. Hu, G. Cheung, , and A. Ortega, “Intra-prediction and gen-
eralized graph Fourier transform for image coding,” IEEE Sig-
nal Process. Lett., vol. 22, no. 11, pp. 1913–1917, Nov 2015.

[8] H. E. Egilmez, A. Said, Y. H. Chao, and A. Ortega, “Graph-
based transforms for inter predicted video coding,” 2015
IEEE International Conference on Image Processing (ICIP),
pp. 3992–3996, Sep. 2015.

[9] H. Chen, S. Zhu, and B. Zeng, “Design of non-separable trans-
forms for directional 2-D sources,” pp. 3697–3700, Sept 2011.

[10] L. Le Magoarou and R. Gribonval, “Are there approximate fast
fourier transforms on graphs?,” pp. 4811–4815, March 2016.

[11] L. Le Magoarou and R. Gribonval, “Flexible Multi-layer
Sparse Approximations of Matrices and Applications,” IEEE
Journal of Selected Topics in Signal Processing, Jun 2016.

[12] K.-S. Lu and A. Ortega, “Symmetric Line Graph Transforms
for Inter Predictive Video Coding,” to appear, Picture Coding
Syposium (PCS), 2016.

[13] A. L. Andrew, “Eigenvectors of certain matrices,” Linear Al-
gebra and its Applications, , no. 7, pp. 151–162, 1973.

[14] A. Cantoni and P. Butler, “Eigenvalues and eigenvectors of
symmetric centrosymmetric matrices,” Linear Algebra and its
Applications, vol. 13, no. 3, pp. 175–288, 1976.

[15] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the High Efficiency Video Coding (HEVC) Stan-
dard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[16] E. Pavez and A. Ortega, “Generalized Laplacian Precision Ma-
trix Estimation for Graph Signal Processing,” 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 6350–6354, 2016.

[17] K.-S. Lu and A. Ortega, “Toolbox: fast implementation of
GFTs based on grid symmetries,” 2017, [Online]. Available:
https://github.com/STAC-USC/symmetric grid.

4113

