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ABSTRACT

This paper investigates the problems of signal reconstruction and
blind deconvolution for graph signals that have been generated by
an originally sparse input diffused through the network via the ap-
plication of a graph filter operator. Assuming that the support of the
sparse input signal is unknown, and that the diffused signal is ob-
served only at a subset of nodes, we address the related problems
of: 1) identifying the input and 2) interpolating the values of the dif-
fused signal at the non-sampled nodes. We first consider the more
tractable case where the coefficients of the diffusing graph filter are
known and then address the problem of joint input and filter identifi-
cation. The corresponding blind identification problems are formu-
lated, novel convex relaxations are discussed, and modifications to
incorporate a priori information on the sparse inputs are provided.

Index Terms— Blind signal reconstruction, blind system iden-
tification, graph signal processing, sampling and interpolation.

1. INTRODUCTION

Graph signal processing (GSP) generalizes traditional SP algorithms
to deal with signals defined on irregular domains represented by
graphs [1,2]. Depending on the application, the particular graph may
correspond to an actual (social, electrical, sensor) network where the
signal is observed, or encode (pairwise) statistical relationships be-
tween the signal values. Recent examples of GSP works dealing with
a number of relevant problems include sampling and reconstruction
of bandlimited signals [3–6], filter design [7,8], and frequency anal-
ysis [9, 10], to name a few.

In this paper we investigate how to generalize blind deconvolu-
tion and signal reconstruction to a particular class of graph signals.
Formally, consider a graph with N nodes, and suppose that the lin-
ear relation y = Hx holds, where y ∈ RN is a partially observed
graph signal, H ∈ RN×N is a linear graph filter, and x ∈ RN is
an unknown sparse input. We are then interested in solving the fol-
lowing problem: Given a) the values of y at a subset of nodes and
b) side information on H and x, find 1) the unknown sparse input x
and 2) the values of y at the non-observed nodes. Since graph fil-
ters implement local diffusion dynamics [8, 11], such a model is of
interest in applications such as opinion formation and source iden-
tification in social networks, inverse problems of biological signals
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supported on graphs, and modeling and estimation of diffusion pro-
cesses in multi-agent networks. Signals adhering to this generative
model will be referred to as diffused sparse inputs.
Contributions and related works. We first look at the more favor-
able setup where the filter H is known (Sec. 2). The goal there is to
reconstruct y under the assumption that the input x is sparse. The
support of x is not known and additional information on some of the
values of x may be available or not. This problem falls into the class
of sparse signal reconstruction. While a number of GSP works have
investigated the reconstruction of bandlimited signals (i.e., assuming
that y belongs to a subspace defined by some of the frequencies of
the graph [3–6]), the subspace here is given by the filter H. More-
over, our focus is on blind setups where the support is not known –
see [5, 12] for exceptions dealing with unknown frequency support
– and incorporate additional side information on the input. After an-
alyzing that problem, we transition to setups where the coefficients
that define the filter H are also unknown (Sec. 3). In this case we as-
sume that the maximum degree of the filter is known and that some
of the values of the input x may be available. The problem of joint
filter and input identification for graph signals was addressed in [11].
The difference here is on the algorithmic approach (which yields
better results), the incorporation of additional side information on
the input x, and the interest in reconstructing y.

1.1. Fundamentals of graph signal processing

This section briefly reviews the main concepts in GSP. For more de-
tails, we refer the reader to, e.g., [1, 2]. Consider the directed graph
G = (N , E) formed by the set N of N nodes and the set of links
E , such that the pair (i, j) belongs to E if there exists a link from
node i to node j. Associated with a given G, a graph signal is a map-
ping from N to R that can be conveniently represented as a vector
x = [x1, . . . , xN ]T ∈ RN , where the ith component, xi, represents
the signal value at node i. To account for the network structure when
operating on graph signals, define the graph shift operator S [9, 13]
as a sparse matrix with nonzero values if (i, j) ∈ E or i = j, that
is, [S]j,i 6= 0 for (i, j) ∈ E or i = j. The multiplication of a graph
signal by a shift matrix results in a linear transformation that can be
computed locally at the nodes of the graph. Mathematically, to com-
pute the ith element of transformed signal, yi = [Sx]i, only the sig-
nal values {xj}j∈Ni are required, where Ni = {j|(j, i) ∈ E}. Al-
though multiple definitions for the shift matrix have been proposed,
the most widely used are the adjacency matrix [9, 13] and the graph
Laplacian [1]. Assuming that S is diagonalizable, the shift matrix
can be decomposed as S = VΛV−1, where Λ ∈ RN×N is a di-
agonal matrix. Based on the shift matrix S, linear graph filters are
defined as graph-signal operators of the form

H =
∑L−1

l=0 hlS
l, (1)
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i.e, polynomials on S [13]. The filtering operation is thus given by
y = Hx, where y is the filtered signal, x the original input, and
h = [h0, . . . , hL−1]T are the filter coefficients, with L − 1 being
the filter degree.
Frequency interpretation. As in classical SP, graph filters and sig-
nals may be represented in the frequency (or Fourier) domain. Defin-
ing the graph Fourier operator as U = V−1, the graph Fourier trans-
form (GFT) of the signal x is x̃ = Ux. For graph filters, the defini-
tion of the GFT that maps h, the filter coefficients, to h̃, the response
of the filter in the frequency domain, is given by h̃ = Ψh, where
Ψ is a N × L Vandermonde matrix whose elements are [Ψ]i,j =

[Λ]j−1
i,i [8]. Note that while in classical SP both Fourier transforms

are the same, here U 6= Ψ. With ◦ denoting the Hadamard (element-
wise) product, the definitions of the GFT of a signal and a filter al-
low us to rewrite the filtering operation in the Fourier domain as
follows [9]

ỹ = Uy = diag
(
Ψh
)
Ux = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (2)

Finally, for the purpose of joint input and filter identification (Sec.
3), the dependence of ỹ on x and h can be alternative written as

ỹ = (ΨT �UT )T vec(xhT ), (3)

where � is the Khatri-Rao, or columnwise Kronecker, product and
vec(·) is the vectorization operator, i.e., the stack of the columns of
the matrix input.

1.2. Generation of diffused sparse signals

This paper considers signals generated by the model y = Hx with
H =

∑L−1
l=0 hlS

l and x having at most S non-zero elements. Math-
ematically, this means that signal y belongs to a subspace of dimen-
sion (at most) S spanned by a subset of the columns of H. The
particular subspace depends on the network topology encoded in S,
the filter coefficients, and the positions of the non-zero values in x.

To see why this model bears practical relevance, note that graph
filters can be used to represent linear diffusion dynamics that depend
on the network topology [8, 11]. Formally, define the lth shifted
version of the input as x[l+1] = Sx[l] and use this to write the output
y of a graph filter as

y =
∑L−1

l=0 hlx
[l], with x

[l+1]
i =[S]iix

[l]
i +

∑
j∈Ni

[S]ijx
[l]
j . (4)

Since each of the shifted inputs can be computed locally, (4) reveals
that y can be viewed as a steady-state signal generated by a seeding
signal x[0] = x that is diffused locally by means of the successive
application of the network dynamics captured by S. Under this inter-
pretation, the assumption of the input x being sparse implies that, at
the initial state x[0], only a few nodes have a non-zero value. How-
ever, each application of the shift (say the lth one) spreads the in-
formation in x[l−1] across the one-hop neighborhood of the nodes in
the (non-zero) support of x[l−1] [cf. (4)]. Hence, for L sufficiently
high (larger than the diameter of the graph) the seeding values in
x[0] will have percolated across the entire network. Potential appli-
cations range from social networks where a rumor originated by a
small group of people is spread across the network via local opinion
exchanges, to brain networks where an epileptic seizure emanating
from few regions is later diffused across the entire brain.

2. RECOVERY WITH KNOWN DIFFUSING FILTERS

Provided that the generative model y = Hx with x sparse holds
true, the goal in this section is to recover y and x from a few sam-
ples of y under the assumption that the shift S and the filter taps h

are known. Note that this implies that the full matrix H is known [cf.
(1)]. Depending on the application, the interest is in using the sam-
pled values of y to recover the values of x, identify the support of x,
recover the values of y in the non-observed nodes (interpolation), or
any combination thereof.

To describe the problem rigorously, let CM ∈ {0, 1}M×N be a
sampling matrix whose rows correspond to canonical vectors iden-
tifying the elements M = {i1, . . . , iM} of the signal y that are
observed, which is then used to define the observed signal as ȳ =
CMy = CMHx. To encode the sparsity in x, consider the set
S = {j1, . . . , jS} containing the indices of the unknown support of
x and the binary matrix CS ∈ {0, 1}S×N that, when applied to x,
yields the non-zero values associated with the S nodes in S. The
blind recovery problem can then be formulated as

x̂ = find {x}, (5)
s. to: ȳ = CMHx, ‖x‖0 ≤ S,

which falls into the class of sparse reconstruction; see, e.g., [14].
Once x̂ is identified, the value of the signal y for the nodes m /∈M
can be found as [ŷ]m = [Hx̂]m.

If M < S, the recovery is ill posed. This is true, even if
the support of x is known. With known support, the success of
the recovery depends on the rank (invertibility) of the submatrix
(CMHCT

S ) ∈ RM×S , which should be at least S and, hence, re-
quires M ≥ S as a necessary condition. When the support is not
known, the recovery performance depends on the spark of the sub-
matrix (CMH) ∈ RM×N . In particular, it holds that if CMH is
full spark, then (5) is guaranteed to identify the ground-truth input
x provided that M ≥ 2S [5]. Since (5) is not convex, a typical ap-
proach to address the optimization is to replace the `0 norm with the
convex `1 norm [15]. Recovery in this case depends on the coher-
ence of the matrix (CMH) [5, 15].

In the context of sparse reconstruction, a (typically) better
alternative to the minimization of the `1 norm

∑N
n=1 |xn| is to

use
∑N

n=1 log(|xn| + ε0), for a small positive constant ε0 [15].
Since minimizing this concave surrogate is challenging, the solution
to the optimization problem may be found using a majorization-
minimization (MM) approach [16]. The main idea is to solve a
series of problems, where the concave function (or any nonconvex
function) is replaced by a convex approximation. Using a first order
Taylor series approximation and with i = 1, ..., I being an iteration
index, applying this approach to (5) yields the convex optimization
problem

x̂(i) := argmin
x

∑N
n=1(|x̂(i−1)

n |+ ε0)−1|xn|, (6)

s. to ȳ = CMHx.

We then set the estimated input to x̂ = x̂(I) and the interpolated
output to ŷ = Hx̂(I). To account for noise in the observations and
small model mismatches, the linear constraint in (6) can be relaxed
and written as ‖ȳ −CMHx‖2 ≤ ε.

The next step is to address the reconstruction problem when
some of the values of the input are known. To that end, let K =
{k1, k2, . . . , kK} represent the set containing the indices of the K
nodes with known input values and let CK ∈ {0, 1}K×N be a bi-
nary matrix that, when applied to x, results in the vector xK = CKx
containing the K known values. Moreover, with Kc denoting the
complement set ofK, xKc is the vector containing the N−K values
that are not known, and CKc ∈ {0, 1}(N−K)×N the corresponding
selection matrix. Knowledge of xK can be based on structural prop-
erties of the application at hand (e.g., physiological constraints for
particular nodes of a brain network). Alternatively, in multi-agent
networks, it is conceivable that the sampling nodes have access not
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only to the value of the diffused signal y, but also to their own value
of the initial sparse input x (note that in this case one could have that
K = S). Mathematically, the incorporation of this knowledge into
(5) or (6) is straightforward. The simplest option is to augment the
problems with a constraint forcing xK = CKx. If computational
complexity is a concern, an alternative is to replace the optimization
variable x with xKc , matrix H with HCT

Kc , and the observation ȳ
with ȳ −CMHCT

KxK.
Reconstruction of bandlimited signals. The problem presented
in this section is closely related to that of recovering a bandlimited
graph signal from a limited number of nodal observations [3–6, 12].
In the aforementioned works, the observed signal is assumed to have
a sparse frequency representation ‖ỹ‖0 = ‖Uy‖0 ≤ S. In other
words, the observed signal y = Vỹ is assumed to belong to a sub-
space spanned by a subset of the eigenvectors of S. Although most
works assume that the set of active frequencies is known beforehand,
some of them have also investigated the reconstruction under the as-
sumption of unknown support [5, 12]. For bandlimited signals, the
M observations in ȳ = CMVỹ are used first to estimate the S
non-zero frequency coefficients in ỹ. The estimated coefficients ˆ̃y

are then used to recover the full signal as ŷ = Vˆ̃y.
The main differences between the observation models given by

y = Vỹ with ‖ỹ‖0 ≤ S and y = Hx with ‖x‖0 ≤ S are sum-
marized next. First, while for bandlimited signals the subspace is
spanned by a subset of the columns of V, for diffused sparse sig-
nals the subspace is spanned by a subset of the columns of H =∑L−1

l=0 hlS
l . Note that although different, both depend on the topol-

ogy of the graph encoded in S. Second, except for the smooth signals
associated with a Laplacian shift [1, 3], mechanisms that generate
bandlimited graph signals are not yet well understood. Differently,
diffused sparse signals have a neat physical interpretation. Third,
while for bandlimited signals the estimation of ỹ is just an interme-
diate step to reconstruct the full y, in our case finding the sparse
signal x can have practical interest too. Finally, while for diffused
sparse signals having access to some values xk of the input can be
reasonable in practice, knowledge of particular non-zero frequency
coefficients ỹk 6= 0 may be more difficult to motivate.

3. RECOVERY WITH UNKNOWN DIFFUSING FILTERS

Given the models H =
∑L−1

l=0 hlS
l and y = Hx with x sparse, the

goal in this section is to recover y and x from a few samples of y
under the assumption that only the shift S and the order of the filter
L − 1 are known. Since the filter coefficients h (hence, the matrix
H) are not known, successful recovery requires estimating h too.

We begin by formulating the problem without considering the
side information xK and discuss a convex relaxation. Recall first
that the sampled signal is defined as ȳ = CMy. Moreover, us-
ing the results in Sec. 1.1, the dependence of y on x and h given
by y =

∑L−1
l=0 hlS

lx can be rewritten as y = Vỹ = V(ΨT �
UT )T vec(xhT ), where for the first equality we have used the defi-
nition of the GFT and for the second the expression in (3). Writing
y in this form is more convenient because it reveals a linear rela-
tion between the output y and the crossproducts in vec(xhT ). With
these conventions, the joint blind recovery of the generating filter
and sparse input is formulated as

{x̂, ĥ} = find {x,h}, (7)

s. to ȳ = CMV(ΨT �UT )T vec(xhT ), ‖x‖0 ≤ S.

This problem requires taking more samples than those for (5), since
the number of unknowns here is larger (L + S vs. S). Even for
high values of M the problem is hard due to: 1) the non-convexity
of the l0 norm and 2) the bilinear constraint in x and h (which is

non-convex and reveals an inherent scaling ambiguity). In order to
devise a tractable relaxation, we first lift the problem by defining the
N×L rank-one matrix Z=xhT . Defining the M×NL observation
matrix M := CMV

(
ΨT �UT

)T
, the problem in (7) becomes

Ẑ = find {Z}, (8)
s. to ȳ = Mvec (Z) , rank(Z) = 1, ‖Z‖2,0 ≤ S,

where ‖Z‖2,0, defined as the number of non-zero rows of Z, is
equivalent to ‖x‖0 in (7). The vectors x̂ and ĥ are found as the
scaled versions of the right and left principal singular vectors of the
rank-one matrix Ẑ, while the output for nodes m /∈ M is found as
[ŷ]m = [

∑L−1
l=0 ĥlS

lx̂]m.
Since (7) and (8) are equivalent, (8) is still difficult to solve, but

as we will see next it leads naturally to a convex relaxation.1

3.1. Algorithmic approach

The first step is to reformulate the feasibility problem in (8) as a
minimization. Moreover, since S is not always known, the l2,0 norm
constraint is added to the objective as a penalty term, which yields

Ẑ = argmin
Z

J(Z) := rank(Z) + τ‖Z‖2,0,

s. to ȳ = Mvec (Z) .

The above optimization is non-convex due to the rank and the l2,0
norm functions. Instead of using the well-known nuclear norm [18]
and l1 norm [19] convex approximations, as done in [11,17], we rely
on the logarithm function to yield a better surrogate [20]. Thus, we
may approximate the cost function as

J(Z) ≈
∑min(N,L)

n=1 log (σn + ε1) + τ
∑N

n=1 log
(
‖zT

n‖2 + ε2
)
,

where σn is the nth singular value of Z, zT
n is the nth row of Z, and

ε1 and ε2 are small positive constants. However, the presence of the
singular values renders the above minimization not straightforward.
Replacing

∑min(N,L)
n=1 log (σn + ε1) with log det(Z + ε1I) is not

possible because Z is not a square positive definite matrix. To over-
come this issue, we rely on the semidefinite embedding lemma [20],
which yields

min
Z,Θ1,Θ2

2∑
j=1

log det (Θj + ε1I) + τ

N∑
n=1

log
(
‖zT

n‖2 + ε2
)
,

s. to ȳ = Mvec (Z) ,

[
Θ1 Z
ZT Θ2

]
� 0.

As in the case of (6), an MM approach is used to deal with the fact
of the cost being concave and not convex. Relying again on a first
order Taylor series approximation, the problem at the ith iteration is

{Ẑ(i), Θ̂
(i)

1 , Θ̂
(i)

2 } := argmin
Z,Θ1,Θ2

2∑
j=1

Tr
[(

Θ̂
(i−1)

j +ε1I
)−1

Θj

]
(9)

+ τ

N∑
n=1

‖zT
n‖2

‖ẑ(i−1)T
n ‖2 + ε2

,

s. to ȳ = Mvec (Z) ,

[
Θ1 Z
ZT Θ2

]
� 0.

1The problems in (7) and (8) have been recently investigated in [11, 17].
The difference here is on the approach to relax the rank function (logdet vs.
nuclear norm), which yields a better recovery performance; the incorporation
of a priori information on the input; and the focus on sampling and signal
reconstruction vs. system identification.
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Fig. 1: Recovery performance (RMSE) for different number of observations (M ) for a setup with: (a) L = 3, S = 8, and N = M ; (b)
L = 3, S = 8, and N = 50; and (c) L = 3, K = 0, N = 50 and known H.

Once the algorithm has finalized, we need to find the best rank-one
approximation of Ẑ = Ẑ(I). This is accomplished by selecting x̂

and ĥ as the scaled principal singular vectors of Ẑ. As in (6), the
linear observation constraint can be relaxed as ‖ȳ−Mvec(Z)‖2 ≤ ε
to account for noise in the observations and model mismatches. The
recovery performance of (9) depends on the properties of M, which,
we recall, was defined as M := CMV

(
ΨT �UT

)T
. Matrix M

depends on both the sampling setM and the topology of the graph
encoded via the eigenvectors (in V and U) and eigenvalues (in Ψ)
of S. As expected, this implies that there are particular graph topolo-
gies that result in more amenable recovery problems. An analytical
characterization of the recovery performance together with design of
optimal sampling schemes is out of the scope of the manuscript and
will be reported elsewhere.

3.2. Known input values

This section discusses the changes in (9) to incorporate the fact that
some values of the input x are known. Recall that xK collects the
known values and K their associated node indices. If the known
values are zero, it suffices to set to zero the corresponding rows of
Z and remove those from the optimization. Hence, in the following
we will assume that xK collects the known non-zero values. Since
Z = xhT , it follows that the rows of the rank-one matrix Z are
proportional, that is, zT

i /xi = zT
j /xj = hT for all (i, j). Exploiting

this, the optimization in (9) can be augmented with the following set
of constraints

zT
ki
xki+1 = zT

ki+1
xki , i = 1, . . . ,K − 1, (10)

which still yields a convex problem. Note that this approach requires
K ≥ 2, i.e, at least two non-zero input values must be known.

As in Sec. 3.1, the last step is to find the best rank-one ap-
proximation of the solution Ẑ = Z(I) generated by the augmented
version of (9). The information in xK must also be incorporated into
this step. To achieve this, write the estimate of the filter coefficients
as ĥ = chȟ, where ȟ is a unit-norm vector obtained as the princi-
pal eigenvector of ẐT Ẑ. The signal x and the scaling factor ch are
obtained then as the solution to

{ĉh, x̂Kc} = argmin
ch,xKc

∥∥∥∥[ ẐK
ẐKc

]
− ch

[
xKȟT

xKc ȟT

]∥∥∥∥2
F

, (11)

where ẐK := CKẐ and ẐKc := CKc Ẑ. After some algebra, it
follows that the solution to (11) is

ĉh =
xT
KẐKȟ

‖xK‖22
, x̂Kc =

1

ĉh
ẐKc ȟ. (12)

Finally, we must point out that the incorporation of xK into the best
rank-one approximation of Ẑ can be implemented even for K = 1.

4. NUMERICAL RESULTS
Here we illustrate numerically the recovery performance of the pro-
posed algorithms and compare it to that of existing alternatives. The
default test case considers an Erdős-Rényi random graph [21] with
edge-presence probability p = 0.1; uses as shift the adjacency ma-
trix of the obtained graph; and draws the non-zero values of x and
the coefficients h from a multivariate Gaussian distribution, which
are normalized to have unit norm. Three scenarios are simulated,
for each of them 1000 realizations of the default case (G,x,h) are
generated, the recovery performance for each realization is evaluated
using the normalized root-mean-squared error defined as RMSE =

(‖x̂ĥT − xhT ‖F )/((N −K)L), and the median value across the
1000 realizations is reported. In the first scenario, the sparsity of the
input is set to S = 8, the number of filter coefficients to L = 3, the
number M of observations varies from 10 to 50, and the size of the
network is set to N = M . Recovery was performed using the algo-
rithm in (9)-(12) and that in [11], which is based on the nuclear norm
surrogate. As can be seen in Fig. 1a, for the recovery problem con-
sidered in this paper, the logdet surrogate outperforms the alternative
based on the nuclear norm with equivalent computational complex-
ity. This figure shows that the performance gap is very small when
the number of observations is small (M < 15) and then it grows for
higher values of M . We also observe that the additional informa-
tion provided by as few as K = 3 known input values provides a
substantial advantage, one of the reasons being that the matrices Ẑ
generated by (9) have smaller ranks. Fig. 1b shows the results for
a scenario like the one in Fig. 1a, but with a fixed number of nodes
N = 50 and varying M . While the results validate the previous
findings, the error grows larger due to the changes in the structure of
the (subsampled) observation matrix. Finally, Fig. 1c shows the re-
covery performance of (6) when H is known, and S is set to S = 15
or S = 25. As expected, with known h and enough observations we
achieve perfect recovery of x even for large values of S.

5. CONCLUSIONS

This paper presented algorithms for blind recovery of graph signals
from partial observations of diffused sparse inputs. The proposed
techniques incorporated a priori information on the sparse input and
addressed two scenarios of interest: one where the filter was known
and another one where only the order of this filter was available. The
resultant non-convex recovery problems were relaxed using the log
as surrogate of the zero-norm and the logdet as surrogate of the rank.
Preliminary numerical results demonstrated the superiority of the
proposed approach relative to existing alternatives, and illustrated
that incorporating additional side information improves the perfor-
mance substantially. Ongoing work includes analytical characteri-
zation of the recovery performance for particular types of filters, as
well as optimal design of schemes to select the sampling nodes.

4107



6. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” IEEE Signal Process. Mag., vol.
30, no. 3, pp. 83–98, 2013.

[2] A. Sandryhaila and J. M. F. Moura, “Big data analysis with
signal processing on graphs: Representation and processing of
massive data sets with irregular structure,” IEEE Signal Pro-
cess. Mag., vol. 31, no. 5, pp. 80–90, 2014.

[3] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling the-
orem for signals on arbitrary graphs,” in IEEE Intl. Conf.
Acoust., Speech and Signal Process. (ICASSP), 2014, pp.
3864–3868.

[4] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacević, “Dis-
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recovery on graphs,” in IEEE Intl. Wrksp. Computat. Advances
Multi-Sensor Adaptive Process. (CAMSAP), Cancun, Mexico,
Dec. 2015, pp. 81–84.

[13] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp.
1644–1656, Apr. 2013.

[14] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process.
Mag., vol. 24, no. Jul., pp. 118–121, 2007.

[15] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity
by reweighted l1 minimization,” Journal of Fourier Analysis
and Applications, vol. 14, pp. 877–905, 2008.

[16] B. R. Marks and G. P. Wright, “A general inner approximation
algorithm for nonconvex mathematical programs,” Operations
Research, vol. 26, no. 4, pp. 681–683, 1978.

[17] S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind
identification of graph filters with sparse inputs,” in IEEE Intl.
Wrksp. Computat. Advances Multi-Sensor Adaptive Process.
(CAMSAP), 2015, pp. 449–452.

[18] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization
heuristic with application to minimum order system approxi-
mation,” in American Control Conf., 2001, pp. 4734–4739.

[19] J. A. Tropp, “Just relax: Convex programming methods for
identifying sparse signals in noise,” IEEE Trans. Info. Theory,
vol. 52, no. 3, pp. 1030–1051, 2006.

[20] M. Fazel, H. Hindi, and S. P. Boyd, “Log-det heuristic for
matrix rank minimization with applications to Hankel and Eu-
clidean distance matrices,” in American Control Conf., 2003.

[21] B. Bollobás, Random Graphs, Springer, 1998.

4108


