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ABSTRACT

In this paper we study the problem of identifying an infection source
in a network based only on the network topology and a stream of
infection timestamps. We propose a sequential source estimation al-
gorithm (SSE) using a particle filter that is based on an approximate
hidden Markov chain model, which can be interpreted as a “reverse”
propagation process. Simulations using synthetic networks and ex-
periments using real-world social network data suggest that SSE is
able to estimate the true infection source to within a small number of
hops with less than 20% of the infection timestamps being observed.

Index Terms— Infection source, diffusion process, sequential
source estimation, partial timestamps, particle filter

1. INTRODUCTION

Online social networks such as Twitter, Facebook and Sina Weibo
are becoming increasingly important sources of information for its
users [1]. Information on a social network can be posted, reposted
and shared within social circles. However, some postings may be
false rumors. These rumors can spread quickly and can potentially
mislead the public [2], triggering undesirable widespread panic [3].
Similarly, a single piece of negative news on a celebrity may damage
his public reputation and even his career. Regulatory agencies may
wish to identify and prosecute such rumor monger. Such rumors can
be modeled using a diffusion or infection process [4]. Epidemics
spreading in a community can also be modeled using an infection
process [5]. Finding the patient zero of an epidemic can aid medical
scientists in analyzing the epidemic’s pathogenesis. So locating the
source of a rumor or an epidemic is often desirable. In this paper, we
consider an infection source initiating a diffusion process in a net-
work. Our goal is to identify this infection source based on knowl-
edge of the network topology and a stream of infection timestamps
that we observe sequentially.

Related work: The problem of inferring the source of an in-
fection process over a network has attracted much recent attention.
Most of these works perform source estimation based on a snapshot
observation of the infection status of some or all nodes in the net-
work. Various infection spreading models have been studied in the
literature, including the susceptible-infected (SI) [6], susceptible-
infected-recovered (SIR) [7], and susceptible-infected-susceptible
(SIS) [8] models. In the SI model, an infected node remains infected
forever, in the SIR model, it can recover and cannot be further in-
fected, and in the SIS model, a recovered node can become infected
again.

A rumor centrality estimator under the SI model was developed
in [6], [9], while [10-12] developed estimators for identifying mul-
tiple infection sources under the SI model. The paper [13] considers

This research is supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 grants MOE2013-T2-2-006 and MOE2014-
T2-1-028.

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

4094

infection source estimation when only a subset of infected nodes
are observed, and a strategic game between infection spreading and
source identification was studied in [14]. In [15], multiple observa-
tions of a SI spreading process are used for source estimation. In [7]
and [16], infection source estimation is investigated under the SIR
model, and [8] considers the SIS model. All the aforementioned
works perform source estimation based only on the observed status
of the nodes, and the network topology. Other related works assume
additional a priori knowledge like the infection spreading rate, in-
cluding [17] which performs source inference via belief propagation,
and [18] which developed a dynamic message passing algorithm.

Network source estimation has also been performed using in-
fection timestamps. In this framework, we observe the first infec-
tion times of a subset of nodes in the network, and together with
knowledge of the network topology, the infection source is inferred.
Clearly, if the infection times of all infected nodes are observable,
then the problem becomes trivial. Therefore, in this approach, we
aim to find estimators that can reasonably infer the source given only
a small number of infection timestamps. In [19], an algorithm based
on the difference in infection times of each node with a chosen ref-
erence node is proposed. Since the infection spreading time over
each edge is assumed to be a Gaussian random variable, we call this
algorithm GAU. As GAU was developed based on tree networks,
our experiments show that it does not work well in dense graphs.
Moreover, its time complexity is O(N®),' where N is the number
of nodes, and the algorithm scales poorly for large graphs with thou-
sands of infected nodes. Two ranking algorithms have been proposed
in [20], which demonstrate improved estimation accuracy compared
to GAU. The aforementioned algorithms all work in a “batch” mode,
where all the infection timestamps are assumed to be available. If a
new timestamp is subsequently made available, the whole estimation
procedure has to be repeated, leading to higher computation com-
plexity. Such algorithms are thus not suitable for online estimation
if the underlying network is large.

Our contributions. All of the previous works perform source
estimation based on a single snapshot observation of either the node
status or infection timestamps, or on multiple snapshot observations
of different infection cascades. In practical applications, observa-
tions of either a node status or infection timestamp may arrive se-
quentially, and sometimes we do not know when the next observa-
tion will be available. In a sequential estimation setting, our goal
is to develop algorithms that can estimate the source using all ob-
servations up to the current time, and be able to quickly update our
estimate when new observations are available. In this paper we pro-
pose a novel sequential source estimation (SSE) algorithm that can
estimate the infection source using a stream of infection timestamps
arriving sequentially. To the best of our knowledge, this is the first
sequential infection source estimation in the literature. Our proposed
SSE algorithm is based on the construction of a “reverse” propaga-

IWe say that f(N) = O(g(N)) if f(N)/g(N) < k for some fixed
k>0as N — oo.
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tion process, which allows us to perform particle filtering on the se-
quential observations. Simulation results show that our algorithm
can quickly and accurately update source estimation as timestamps
arrive sequentially.

The rest of this paper is organized as follows. In Section 2, we
formulate the sequential source estimation problem. In Section 3,
we construct a reverse infection propagation process and present
our SSE algorithm. Simulation results on both synthetic and real-
word data are given in Section 4. Section 5 concludes the paper.
We use Unif (A) to denote the uniform distribution over the set A,
N (u, 0?) to be the Gaussian distribution with mean y and variance
a2, Exp()\) to denote the exponential distribution with rate ), and
I'(a, B) to be the Gamma distribution with shape parameter o and
rate parameter 5. We use p(z | y) to represent the conditional distri-
bution of = given y. The symbol ~ indicates equality in distribution.

2. PROBLEM FORMULATION

We model the network as an undirected graph G = (V, £), where
V is the set of nodes and £ the set of edges. At an unknown time
to, an infection source s € V initiates a diffusion process. Let Ov
be the set of neighbors of node v and 7, as the random propaga-
tion delay associated with edge (u, v). We assume that all {7, } are
independent and identically distributed (i.i.d.) continuous random
variables and each follows a distribution with probability density
function f-(-). Let d(u,v) be the length of a shortest path between
node u and node v in G.

We suppose that we observe the infection timestamps (vn, tr),
n > 1 sequentially, where v,, is the identity of the n-th node ob-
served to be infected, and ¢,, is its first infection time. We do not
assume that the infection times {¢,} are ordered in any way as a
node that was infected earlier could be observed only later. Let
On = {(vk,tx) : k < n} be the set of observations up to the
n-th timestamp, and let

Sn = Sn(on) (1)

be the infection source estimate based on O,,. Our aim is to design
Sn so that s,41 can be updated from it easily, and s,, is in some
sense close to the true source s™ for n sufficiently large.

3. SEQUENTIAL SOURCE ESTIMATION

In this section, we first construct a stochastic process that we use to
represent the reverse infection propagation process. Then, using a
series of approximations, we derive a particle filter for sequentially
estimating the infection source given a stream of infection times-
tamps.

3.1. Reverse Propagation Process

We define a V-valued discrete-time Markov chain (Xy,),>0 where
Xo ~ Unif (V), and for n > 1, the conditional probability of X,, =
ZTn given X, _1 = x,—1 1S given by

« ifz, = Tn—1,
1— .
p(an | Tn-1) = Toenoy i %n €0Tn_1, @)
otherwise,

where |0x,—1| is the number of neighbors of node x,,—1, and o €
(0,1) is denoted as self-transition probability. We interpret this as
a “reverse” propagation process as follows: Consider the infection

path p(s*,v1) from s™ to the first observed infected node v1. The
node X; is a node in p(s*,v1). We say that X; is an ancestor
to v1. Similarly, given vz, we wish to find a common ancestor in
p(s™,v1) N p(s*,v2) to both v1 and va. If a neighbor of X; is
also its ancestor in p(s*,v1) N p(s™, v2), we let X3 be chosen to be
this neighbor, otherwise we let Xo = X;. This procedure is then
repeated. We approximate this stochastic process with the Markov
chain described in (2), where « is an appropriately chosen constant.
In Section 4, we indicate how to choose this constant through simu-
lations.

We can now cast our sequential source estimation problem as
an approximate hidden Markov model (HMM). Let (z)n>0 be
given by the Markov chain defined in (2), and the hidden states be
(zn)n>1 = (n, On—1)n>1, where Og = (. Let the observations
be (Yn)n>1 = (Un,tn)n>1. The hidden states (zy,)n>1 do not form
a Markov chain, but we will adopt the particle filtering framework
of a HMM as an approximation. Experiments in Section 4 indicate
that this approximation does not unreasonably impair our estimation
results.

To perform particle filtering, we make further approximations as
follows. For the state transition probability, we take

p(zn ‘ Zn—l) = p(xnaon—l | Tn—1, On—2)
~ p(en | Tn-1), (3)

where we ignore the contributions of O,,—1 and O, _2. We assume
that infections are transmitted from the source to each infected node
through the shortest path, so that the infection propagation graph is
a tree. Suppose that x,, is infected at time #,,,, . Then,

PWn | 20) & ftn — te,; d(vn, z0)), )

where f(-; d) is the d-fold convolution of f,. We estimate £, from
Oy, —1 as follows:

n—1

tr, = argmax 11 Ft: =t d(vi, ), ®)

where we have assumed that the infection time of each v;, 7 < n—1,
is independent of the others. This is an approximation to allow easy
computation of £, .

To illustrate (5), we now derive the estimator £,,, for the case
where the propagation delay over each edge follows a Gaussian dis-
tribution V' (2, 02). Then f(-;d) is the density of N (du, do?). It
can be shown that in this case,

iy (ti — dip) /di

Yiodt
where d; = d(v;, x,). By taking the expectation of (6), it is clear
that fzn in (6) is an unbiased estimate of ¢, . In fact, this is true for
any propagation delay distribution. For any propagation delay distri-
bution for which no analytical form for #,,,, exists, either a numerical
method can be used to solve (5) or we simply use (6) with p being
the mean of the distribution.

We can now describe the steps involved in our particle filter. Let
Z1.n represent (x;)j—,. For each n > 1, we wish to obtain a set of

m m

weighted particles {z’, wy, }%:1 so that we can approximate

twn =

(6)

M
P@n | yun) = Y wi's (wn — 7)), )

m=1

where §(+) is the Dirac delta function. For each n > 1, we perform
the following steps:
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1. Sample particles from a proposal density
z,' ~ q(@n | T _1,Y1n) - ®)
2. Update {zn" 1, w1} to {zn', w;'} where
wy' o< Bpwn_1, )

and

(e | 251) f(tn — o5 d(vn, 20))

q (xn | x?}n—hyl:n)

Bn = (10)

Various particle filter algorithms differ in their choices of proposal
density ¢(-) in (8). The popular bootstrap filter in [21] uses tran-
sition function (3) as the proposal density, and thus (3, in (10) is
reduced to the likelihood function f(t, — fzn; d(vn, zn)). In our
SSE algorithm, we also adopt this strategy. To avoid degeneracy, we
also implement a resampling step in which {z", w};'} is resampled
to obtain M equally-weighted particles {Z};', 1/ M}, which are then
used in place of x; in the sampling step (8). We adopt the widely
used systematic resampling method [22], which outperforms other
resampling schemes in most scenarios and is easy to implement.

Finally, the infection source is found by finding the maximum a
posteriori estimate using (7), i.e., s, = x;,'", where

my, = arg maxw,, . ¢8))

The detailed SSE algorithm is shown in Algorithm 1. For each new
observed y, where n < |V|, we first perform a breadth-first search
tree rooted at v,, and store the pairwise distances in a hash table. This
process incurs a time complexity of O(|V|?). We then compute £
form =1, ..., M, according to (6), where M,, < |V| is the number
of distinct nodes used as particles. The complexity of this step is
O(nM,). We have nM,, < |V|?, therefore the overall time com-
plexity for each new observed v, is O(|V|?). Experiments in Sec-
tion 4 also show that M,, generally decreases as n increases because
the resampling step allows us to discard nodes with low weight. At
each new observation, SSE thus incurs a lower time complexity than
GAU, which requires O(|V|*) time complexity if it is to be recom-
puted for each new observation.

4. EXPERIMENTAL EVALUATIONS

4.1. Synthetic Data

We first perform experiments on Erdos-Renyi (E-R) graphs ER(n, np)

where n is the number of nodes, and np is the expected degree of
each node. We choose n = 1000, and np = 2 or 4 to simulate a
graph that is relatively sparse or dense respectively. Some properties
like the average diameter and pairwise distance are listed in Table
1. In each simulation, we assume that the propagation delay over
every edge follows either a Gaussian distribution A/ (y, o) or an
exponential distribution Exp()\).

We first generate 1000 timestamps initiated by a random node,
and then randomly choose a portion of the timestamps to perform
sequential source estimation. In Algorithm 1, we use M = 2000
particles. Simulation results for ER(1000, 2) and ER(1000, 4) are
shown in Fig. 1 and Fig. 2, respectively. Each curve is averaged over
200 experiments. The estimation deviation is defined as the distance
between the estimated source and the real source. From parts (a)
and (c) in both Fig. 1 and Fig. 2, we see that o should be chosen
from (0.9, 1.0) to get a better performance. From parts (b) and (d)

Algorithm 1 Sequential Source Estimation (SSE)

Input: Adjacent matrix of the graph G, a stream of timestamps
(U, bn)_y, and £ ()
Output: Infection source estimates (s, ),
forn=1,...,N do
if n = 1 then
Sample z1* from Unif (V), form =1,..., M.
Letz!" = o, wi* = 1/M.
else
Sample z7;' ~ p(x;' | Zp 1) in(2)form=1,..., M.
Find distinct nodes {z]'}*'"  and count their respective
numbers {7 }M" where 3" M o = M.
form=1,..., M, do
Compute fz;{l according to (6).
Compute weight wy;' = ci'p(yn | 2z5') according to (4).
end for
Normalize {w"} so that 3" M7 wi = 1.
Use systematic resampling to obtain M equally weighted
particles {Z1", 1/ M} _,.
Sn = Ty'™ where m,, = arg max,, wy,'.
end if
end for

in both Fig. 1 and Fig. 2, we see that with 10% to 20% of the total
timestamps, SSE finds an estimate that is on average within 2 hops
of the real source if o = 0.95.

We compare SSE with GAU proposed in [19] in Fig. 3. Since
GAU requires computing a breadth-first search tree rooted at every
infected node, it has high complexity for large graphs. Therefore, we
perform experiments on smaller graphs ER(200, 2). From Fig. 3(a)
and Fig. 3(b), we see that SSE has smaller average estimation de-
viation and higher detection rate for both Gaussian and exponential
spreading when there are less than 50% timestamps.

We also evaluate the performance of our algorithm with Face-
book network provided by SNAP.? We extract a subgraph with 1034
nodes and 26749 edges for infection spreading using a Gaussian dis-
tribution for the edges’ propagation delay with p/o = 4. We then
randomly choose timestamps to perform sequential source estima-
tion (we let @« = 0.95 and average over 300 experiments). Results
in Fig. 4 show that the average estimation deviation decreases with
more timestamps, and approaches to around 1.4 hop with 10% of the
total timestamps available. However, the performance is not as good
compared to the E-R graphs, because the Facebook network is much
denser.

Graph |€]/]1V| Diameter Pairwise distance
ER(1000, 2) 1 21.6 8.98
ER(1000, 4) 2 1 5.13
Facebook 259 9 2.95
Weibo 1.02 15 3.48

Table 1. Some graph properties of the networks used.

4.2. Weibo Data

We evaluate the performance of SSE with a sample of Sina Weibo
data provided by the WISE 2012 challenge.® We first extract a sub-

Zhttps://snap.stanford.edu/data/
3http://www.wise2012.cs.ucy.ac.cy/challenge html
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Fig. 1. Sequential source estimation on ER(1000,2). (a) and (b)
are based on Gaussian spreading with /o = 2, while (c) and (d)
are based on exponential spreading with A = 1. In (b) and (d) we
average the estimation deviation over 200 experiments. In (a) and (c)
we obtain the overall average by averaging the estimation deviation
over 200 experiments and 40% timestamps.
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graph with 4642 nodes and 4755 edges (if user a retweets user b’s
tweet then there is an edge between nodes a and b) using 44017
tweets. Some properties of the graph generated are summarized in
Table 1. Secondly, we choose a message that was retweeted 2877
times and we use the first 2000 timestamps for SSE. The total time
spanned by these tweets is about 5 hours. Finally, we learn the mean
time of a tweet spreading through an edge from historical tweets,
which yields an estimate of about 65 minutes. We set @ = 0.95 in
SSE and adopt an exponential spreading model with different rates A
in SSE. We perform 300 experiments, and for each experiment, we
randomly choose the ordering of the timestamps. Results averaged
over all the experiments are shown in Fig. 5. We see that the perfor-
mance is best when 1/A = 65 minutes, which matches the historical
estimate, and is worse when 1/ is too small or too big.

5. CONCLUSION

We have developed a sequential infection source estimation algo-
rithm for identifying an infection source using a stream of infection
timestamps. Our method is based on constructing a reverse propa-
gation process, which allows us to build a particle filter for sequen-
tial estimation. Each sequential update has low complexity, which
allows the source estimate to be updated quickly whenever a new
timestamp is available. Experiments on both synthetic and real-
world data suggest that our approach can find the infection source
to within a small number of hops from the true source.
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