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†Department of ECE, Stony Brook University, Stony Brook, NY 11794
∗IMS Health Inc., Plymouth Meeting, PA 19462

ABSTRACT
Opinion dynamics and its understanding in social networks is an
emerging field of research in recent years. Existing work mainly
considers direct exchanges of opinions among agents under certain
conditions. This paper addresses a problem where the agents of
a network make and exchange decisions repeatedly in a multi-
hypothesis scenario and learn from the neighbors’ decisions. Two
models are proposed where the agents of the network use quasi-
Bayesian learning to extract information about the true hypothesis
from the neighbors’ decisions. Theoretical analysis is provided
about the conditions of a setting when agents become stubborn, that
is, when they do not change their opinions anymore. We have run
computer simulations to demonstrate the asymptotical properties of
the proposed models. With our simulations we also show that, under
one of the models, the agents of the network reach a consensus, and
under the other, they form clusters.

Index Terms— Bayesian learning, Opinion dynamics, Decision
exchanges, DeGroot model

1. INTRODUCTION

With the popularization of online social networks such as Facebook
and LinkedIn, there are many questions of interest about them. One
of these questions is how the opinions in social networks are formed
and how they spread. More specifically, in a network of social agents
described by a connected graph where each node represents one
social agent, the aim is to model the learning of agents from their
neighbors by way of exchanging decisions in a multi-hypothesis
setting. Furthermore, it is of interest to understand how the opinions
of the agents in the network change with time [1, 2, 3, 4].

In this context, efforts have been made in different fields, including
economy [5, 6], sociology [1, 7], engineering [8] and physics [9]. In
[5, 6], the authors consider social learning problems by Bayesian and
non-Bayesian models, respectively. In these papers, the authors also
provide proofs of the asymptotic optimality of the proposed models.
In [1], the Krause model for addressing bounded confidence was
introduced. According to the model, each agent only exchanges
opinions with those agents whose opinions do not differ too much
from its own opinion. A comprehensive review of opinion dynamics
can be found in [10].

In social networks, individuals cannot always exchange beliefs
and opinions directly. In addressing this, one category of models
assumes that only decisions can be exchanged among neighboring
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agents [11, 12, 13, 14]. Then the agents make inference on the
true state of nature from the available information and make their
decisions by maximizing their utility. In [11, 12], the authors
propose that once a decision is observed, the learner adjusts its
log opinion ratio by adding or subtracting a fixed small value.
Recently, in [13], the authors consider social learning in a network
with line topology and where the agents make random decisions
and repeatedly update their opinions by relying on Bayes’ rule. To
alleviate the computational complexity of the Bayesian belief update
in networks with general topology, in [15] an approximated Bayesian
learning method is proposed.

In this paper, we consider a general network of N agents that decide
on one of K hypotheses. At the beginning, each agent obtains a
private signal from the true hypothesis, which is the same for all
the agents in the network. Subsequently, in every time slot, each
agent exchanges information with its neighbors and makes its own
decision. Motivated by DeGroot’s model in linear opinion pooling
[16], we propose two discrete time models where the agents fuse the
information from the decisions of their neighbors by using Bayes’
rule. Ideally, rational agents in a social network would apply Bayes’
rule successively based on their private signals and the decisions
of their neighbors. However, as the agents are unaware of the
global network structure, such repeated applications of Bayes rule
in networks become very complex due to the increasing amount of
hidden variables [17, 18]. In contrast to a fully Bayesian model,
this paper proposes two alternative models for approximating the
posterior beliefs of the agents and based on the history of the
decisions of their neighbors. By simulations, we show that by Model
1, it is likely that a big portion of the agents in the system will choose
the true hypothesis. For Model 2, we show that there is a very large
probability that all the decisions of the agents converge to the true
hypothesis.

This paper is organized as follows: in the next section we describe
the studied system and explain the agents’ social learning processes
in the network. In Section 3, we present two models of Bayesian
learning. An analytical result related to Model 1 is provided in
Section 4. Simulation results are given in Section 5, and concluding
remarks are made in Section 6.

2. PROBLEM FORMULATION

Consider a network of N agents Ai, i ∈ NA = {1, 2, ..., N}.
The agents do not know the topology of the network but
they know their neighbors. The agents are also capable of
performing local computations and of exchanging decisions with
their neighbors. Suppose there are K possible hypotheses, listed as
H0,H1, · · · ,HK−1. Under each hypothesis, a random categorical
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signal y is generated, where y ∈ K = {0, 1, · · · ,K − 1}. The
different hypotheses have their unique distributions, that is, there
is a total of K different distributions each with the same support
{0, 1, · · · ,K − 1}. Each agent Ai receives a random signal yi as
its private observation from the same distribution as do the other
agents in the network. The probability distribution of yi under Hk
is φk(yi), i.e.,

Hk : yi ∼ φk(yi). (1)

In this model, we further assume that the distribution of the signals
has the form

φk(y) =

{
P, if y = k,
1−P
K−1

, otherwise,
(2)

where P is a constant in the range (0, 1). We also assume that the
probability distributions of the signals under all the hypotheses are
known to the agents.

At each time slot t, every agent Ai maintains its private belief
according to the Bayes’ rule. We denote the belief by the vector
B

(t)
i = [β

(t)
i,0 , β

(t)
i,1 , · · · , β

(t)
i,K−1]>. The vector element β(t)

i,k denotes
the posterior probability of the ith agent about Hk at time instant t.
Thus, the equation

∑K−1
k=0 β

(t)
i,k = 1 would always hold ∀i, t. Each

posterior probability is given by

β
(t)
i,k = p(Hk|yi, I(t)i ), (3)

=
π
(t)
i,kp(yi|Hk)∑K−1

l=0 π
(t)
i,l p(yi|Hl)

, (4)

where π(t)
i,k, refers to the social belief formed by Ai on Hk based

on all of the information available to it, I(t)i , other than yi. We
use the vector Π

(t)
i = [π

(t)
i,0 , π

(t)
i,1 , · · · , π

(t)
i,K−1]> to represent the

social belief that Ai holds at time t. It is worth noting that
Π

(t)
i ∈ U = {Π(t)

i |
∑K−1
l=0 π

(t)
i,l = 1, π

(t)
i,k ∈ [0, 1], ∀k ∈ K}

holds true ∀i ∈ NA, ∀t ∈ N+. This Π
(t)
i serves as the prior

distribution, and it is time varying as more and more decisions of
the neighbors of Ai become known to Ai. At the initial time slot,
Π

(1)
i = [1/K, 1/K, · · · , 1/K]>, ∀i ∈ NA. The likelihood, by

definition, can be obtained by

p(yi|Hk) = φk(yi). (5)

The Ai’s decision on choosing one of the hypotheses is made
according to

α
(t+1)
i = arg max

k∈K
p(Hk|yi, I(t)i ). (6)

In the next section, we present agents’ Bayesian learning models for
updating their respective social beliefs at each time slot.

3. MODELS OF LEARNING

Before we proceed to the proposed models, we first sketch
DeGroot’s model from [16]. At time instant 1, agent Ai in the
multi-agent system starts with a belief ζ(1)i ∈ [0, 1], ∀i ∈ NA
about a certain hypothesis. At the first time slot, the beliefs of

all the agents in the system are represented by a vector Z(1) =

[ζ
(1)
1 , ζ

(1)
2 , · · · , ζ(1)N ]>.

Meanwhile, the agents’ trust in each other can be represented by an
N ×N stochastic matrix P, where the element pi,j ≥ 0 represents
the belief thatAi has in agentAj . It is assumed that

∑N
j=1 pi,j = 1.

The matrix P is not necessarily doubly stochastic. Then, at time slot
t (t > 1), all the agents update their beliefs according to

Z(t+1) = PZ(t). (7)

In this paper, we propose a modified DeGroot model in a network
where the agents learn from the decisions of their neighbors by
the Bayesian method in a multi-hypothesis setting. More precisely,
instead of linearly combining the belief of its neighbors, agent Ai
adjusts its belief inHk based on α(t)

j by Bayes’ rule, as

π
(t+1)
i,k =

π
(t)
i,k

∏
j∈Ni

p(α
(t)
j | Hk)∑K−1

l=0 [π
(t)
i,l

∏
j∈Ni

p(α
(t)
j | Hl)]

, (8)

where Ni denotes the neighbors of agent Ai. The “action
likelihood”, p(α(t)

j | Hk) denotes the probability of Aj making

decision α(t)
j given thatHk is true. We remark that, to avoid sudden

drop of social belief, Ai would ignore p(α(t)
j | Hk) if it equals zero.

According to (3) and (6), α(t)
j = k if and only if

π
(t)
j,kp(yj | Hk) ≥ π(t)

j,l p(yj | Hl) (9)

holds ∀l ∈ K. The action likelihood can be written as,

p(αj = k | Hm) =

∫
yj∈Sk

φm(yj)dyj , (10)

where the set Sk = {yj | π(t)
j,kp(yj | Hk) ≥ π

(t)
j,l p(yj | Hl), ∀l ∈

K} is the decision region of making decision k by agent j.

In computing p(α
(t)
j | Hk), agent Ai must know its neighbor’s

current social belief vector Π
(t)
j . However, Π

(t)
j is unknown to Ai

and consequently,Ai has to estimate it. We propose two models that
we use for estimating Π

(t)
j .

Model 1: The agent Ai considers Π
(t)
j to be a point estimate that is

equal to its own social belief Π
(t)
i . That is to say, in the inference

procedure of Ai, π
(t)
j,k = π

(t)
i,k, i.e., p(π(t)

j,k) = δ(π
(t)
j,k − π

(t)
i,k) is true

∀k ∈ K. If Aj is a neighbor of Ai, it is convenient and intuitive for
Ai to assume that Aj has the same social belief. Such methodology
is useful for agents with limited computation ability.

Model 2: The agent Ai draws Π
(t)
j = [π

(t)
j,0, π

(t)
j,1, · · · , π

(t)
j,K−1]>

from a Dirichlet distribution, i.e., Π
(t)
j ∼ Dir(a(t)

j ) given by

p(π
(t)
j,0, π

(t)
j,1, · · · , π

(t)
j,K−1|a

(t)
j ) =

Γ
(∑K−1

k=0 a
(t)
j,k

)
∏K−1
k=0 Γ

(
a
(t)
j,k

)
×

K−1∏
k=0

π
a
(t)
j,k
−1

j,k (11)
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with a parameter a
(t)
j = [a

(t)
j,0, a

(t)
j,1, · · · , a

(t)
j,K−1]> satisfying

a
(t)
j,k = n

(t)
j,k + 1 (12)

for all k ∈ K, where n(t)
j,k is the number of times Ai observes that

Aj has made a decision k up until t. To explain the motivation
of such estimation, suppose we have a Multinomial random vector
S ∼ Multi(n,p) that is an outcome of n trials with K possible
mutually exclusive outcomes with corresponding probabilities p =
[p1, p2, · · · , pK ]>, which are unknown. If we estimate p with a
Dirichlet prior with parameters a0 = [1, 1, · · · , 1]1×K , being a
uniform prior of p on its domain, the posterior p̂ also follows a
Dirichlet distribution but with parameters an, which is a vector
whose kth element ak is equal to one plus the number of occurrences
of the kth outcome.

With both models, Ai computes p(α(t)
j | Hk) for all k ∈ K,

according to

p(α
(t)
j | Hk) =

∫
Πj∈U

p(α
(t)
j |Hk,Π

(t)
j ) p(Π

(t)
j ) dΠ

(t)
j . (13)

With model one, (13) simplifies to

p(α
(t)
j | Hk) = Pr(α

(t)
j |Hk,Π

(t)
j = Π

(t)
i ). (14)

With model two, (13) turns into

p(α
(t)
j | Hk) (15)

=

∫
U

(∫ +∞

−∞
p(α

(t)
j | yj ,Π

(t)
j )p(yj | Hk)dyj

)
p(Π

(t)
j )dΠ

(t)
j

=

∫
U

∫
S
α
(t)
j

φk(yj)dyj

 p(Π
(t)
j )dΠ

(t)
j .

4. ANALYSIS OF MODEL 1

In this section, we show that for Model 1, if the ratio of the largest
element and the second largest element in an agent’s social belief
becomes greater than a given threshold, this agent will become a
stubborn agent. In other words, irrespectively of the neighbors’
decisions, this agent will keep its social belief unchanged forever.

Proposition 1 In the proposed Model 1, let π(t)
i,m1

be the largest

element in vector Π
(t)
i , and let π(t)

i,m2
be the second largest element.

If
π
(t)
i,m1

π
(t)
i,m2

> P (1−N)
1−P , then Π

(τ)
i = Π

(t)
i , ∀τ > t.

Proof : From (6), we can have that if
π
(t)
i,m1

π
(t)
i,m2

> P (1−N)
1−P becomes

true,Ai will chooseHm1 regardless of yi. Thus, theAi’s estimation
of its neighbor Aj will use

p(α
(t)
j = m | Π(t)

j = Π
(t)
i ) =

{
1 if m = m1,

0 otherwise.
(16)

If α(t)
j 6= m1, Ai will ignore p(α(t)

j | Π
(t)
i ), since p(α(t)

j | Π
(t)
i ) =

0; if α(t)
j = m1, because p(α(t)

j | Π
(t)
i ) = 1. Then Ai’s updated

social belief is Π
(t+1)
i = Π

(t)
i . 2

With this proposition, we can argue that the system evolves into a
stable state (no changes in decisions) once all the agents in it become
stubborn. Though all the agents may not become stubborn, the
number of stubborn agents in the network will not decrease with
time. It is likely, as shown in the following simulation, that the
majority of agents become stubborn in finite time.

0 5 10 15 20 25 30

t

0.0
0.2
0.4
0.6
0.8
1.0

π̄
0

Model 1

0 5 10 15 20 25 30

t

0.0
0.2
0.4
0.6
0.8
1.0

π̄
0

Model 2

Fig. 1. Evolution of the average of social belief of all agents over
time. The top subplot was obtained by running Model 1, with a
total number of agents N = 500, number of hypotheses K = 10,
probability of correct hypothesis P = 0.25, and number of iterations
T = 30. The bottom subplot was run with Model 2, with the same
parameters as Model 1. In both models the average social belief is
nondecreasing with time.

5. SIMULATION RESULTS

In this section, we provide several simulation experiments to
demonstrate the properties of the proposed models. In all
experiments, a total number of N agents were modeled on a random
Erdős-Rényi network of which the connectivity is checked. At the
beginning of each experiment, every agent receives a random signal
that is generated from hypothesis k by the distribution given in (2).
While k is not known to the agents, P and K are known. Without
loss of generality, we set k = 0 in all experiments.

In the first experiment, we simulated Models 1 and 2, and
demonstrated the evolution of the agents’ social belief as well as
the agents’ decisions. In Figure 1, we show the evolution of the
network’s average social belief over time, where the network’s
average social belief was obtained by an average of the social belief
of all the agents in the network. We can see that in both methods the
network’s average social belief is nondecreasing over time. Though
only one experiment is shown, from multiple experiments we know
that the magnitude of P affects the rate of convergence. To be more
specific, the greater P is, the more agents will eventually choose the
correct hypothesis.

In Figure 2, we also show histograms of the distribution of the
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Fig. 2. The upper two subplots show the histogram of agents’
decision at the starting and ending time slots for Model 1, while the
lower two subplots show that for Model 2. The bars show the number
of agents choosing the corresponding hypothesis. The experiments
were run with the same parameters as Figure 1. At the beginning,
the agents’ decisions were distributed slightly in favor of the true
hypothesis (H0) for both models. In the last time slot, for Model
1, the true hypothesis held the biggest cluster of agents, while for
Model 2, all agents eventually choseH0.

agents’ decisions, both, at the starting and ending time slots. We
can see that according to Model 1, the true hypothesis ended up with
the greatest number of believers, while the other hypotheses were
still adopted by some agents. By contrast, all the agents of Model 2
eventually chose the correct hypothesis.

In the second experiment, we simulated Models 1 and 2 multiple
times under the same settings. Figure 3 shows the evolution of
the average number of agents choosing the correct hypothesis. We
can see that the average number of agents choosing the correct
hypothesis increased with time and then reached a stable state.

We also analyzed the convergence properties of Models 1 and 2.
From Figure 4, we can see that in Model 1 not all the agents finally
chose the true hypothesis, though usually a large numbers of them
did. However, in Model 2, it is very likely that all the agents
ended up with the correct decision. Yet, exceptional outcomes exist,
where only a small number of agents chose the true hypothesis.
A preliminary explanation of this phenomenon is that the final
decisions of the agents depend heavily on the random signals they
received at the beginning. Therefore, if the signals show less
correlation with the correct hypothesis, it is possible that an agent’s
decision does not converge to the true one.

6. CONCLUSION

In this paper, we introduced a Bayesian learning model to study
decision exchanges in a random network. We proposed two quasi-
Bayesian models for the agents in the network to estimate the social
beliefs of their neighbors. With Model 1, the agents are inclined
to end up with the true hypothesis, with many agents still sticking
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Fig. 3. Evolution of average number of agents choosing the true
hypothesis over time. The upper subgraph shows the result of Model
1, while the lower subgraph shows the result of Model 2. Both
experiments had parameters with total number of agents N = 50,
number of hypotheses K = 5, probability of the correct hypothesis
P = 0.4, and number of iterations T = 50. The Monte Carlo
tests were run for 100 times. For both models, ᾱ is generally
nondecreasing with time.
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Fig. 4. Distribution of the final number of agents choosing the
correct hypothesis (H0). The experiments were run with the same
parameters as those in the caption of Figure 3. The left subplot is
for Model 1 and the right for Model 2. The histograms show that in
Model 1 the agents had the inclination to chooseH0, while in Model
2, it is more likely that all the agents eventually clustered toH0.

to other hypotheses. With Model 2, the agents eventually converge
to the true hypothesis. In the future, this work will be extended to
(i) finding analytical results for the convergence properties of the
network’s average social belief and the expected probability of the
agents choosing the true hypothesis and (ii) applying the model to
real-life data and trying to predict outcomes.
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