
D2L: DECENTRALIZED DICTIONARY LEARNING OVER DYNAMIC NETWORKS

A. Daneshmand, Y. Sun, G. Scutari, and F. Facchinei†

ABSTRACT
The paper studies a general class of distributed dictionary learning
(DL) problems where the learning task is distributed over a multi-
agent network with (possibly) time-varying (non-symmetric) con-
nectivity. This setting is relevant, for instance, in scenarios where
massive amounts of data are not collocated but collected/stored in
different spatial locations. We develop a unified distributed algo-
rithmic framework for this class of non-convex problems and estab-
lish its asymptotic convergence. The new method hinges on Suc-
cessive Convex Approximation (SCA) techniques while leveraging
a novel broadcast protocol to disseminate information and distribute
the computation over the network, which neither requires the double-
stochasticity of the consensus matrices nor the knowledge of the
graph sequence to implement. To the best of our knowledge, this is
the first distributed scheme with provable convergence for DL (and
more generally bi-convex) problems, over (time-varying) digraphs.

Index Terms— Dictionary Learning, distributed algorithms, non-
convex optimization, time-varying networks.

1. INTRODUCTION
We study a general form of dictionary learning problem, which con-
sists in finding a linear transformation D ∈ RM×K (a.k.a the dictio-
nary), by which a given set of data S ∈ RM×N can be represented
throughout a matrix X ∈ RK×N with a favorable structure (e.g.,
sparsity). This model is the building block of many machine learning
and inference tasks, including image denoising/debluring/inpainting,
superresolution, dimensionality reduction [1], bi-clustering [2], feature-
extraction and classification [3], and prediction [4].

In this paper we target scenarios where the data matrix S , [S1,
. . . ,SI ] is not centrally available, but its blocks Si ∈RM×ni , with∑
i ni = N , are stored in a multi-agent network, with (possibly)

time-varying connectivity. We assume that each agent (node) i, i =
1, . . . , I , owns one block Si. This setting is motivated by several
applications, e.g., in cloud, sensor, or cluster-computer networks,
where collecting all data can be challenging or even impossible, ow-
ing to the size of the network and volume of data, time-varying con-
nectivity, energy constraints, and/or privacy issues. Partitioning the
representation matrix X , [X1, . . . ,XI ] according to [S1, . . . ,SI ],
the class of distributed dictionary learning problems reads

min
D,(Xi)

I
i=1

I∑
i=1

1

2
‖Si −DXi‖2F︸ ︷︷ ︸

,fi(D,Xi)

+G(D) +

I∑
i=1

gi(Xi)

s.t. D ∈ D, Xi ∈ Xi, ∀i = 1, . . . , I;

(P)

where the quadratic loss measures the mismatch between the data
and the model; G : D → R and gi : Xi → R are some con-
vex functions, that are properly chosen to impose extra structure on
the solution, e.g., low-rank or sparsity; D is a compact convex set,
(boundedness is needed to avoid unbounded solutions); and each Xi
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is a convex closed (not necessarely bounded) set. Problem P en-
compasses several DL-based formulations of practical interest, cor-
responding to different choices of the regularizers and feasible set
(cf. Sec. 2); examples include the elastic net DL [5], sparse PCA [6],
Non-negative Matrix Factorization and Low-rank approximation [7].

Our goal is to design a unified distributed algorithmic frame-
work for problems in the form of P wherein the network is mod-
eled as a (possibly) time-varying, arbitrary digraph. This poses sev-
eral challenges, namely: i) P is nonconvex and nonseparable; each
function fi depends on a common set of variables−the dictionary
D−shared among all agents, and the private variables Xi, controlled
only by agent i; ii) each agent i knows only its own function fi [data
Sj , j 6= i, are not available to agent i]; iii) the network digraph is
time-varying with no specific structure; and iv) the gradient and the
Hessian matrix of fi are not bounded. Current works cannot address
all the above challenges, as briefly documented next.

Most of the literature on distributed multi-agent optimization
deals with convex, unconstrained optimization problems [8–10] over
undirected, static graphs [11–13]. The nonconvex case has been re-
cently studied in [14–17]. All these works however require that the
(sub)gradient of the objective function is bounded, and they cannot
efficiently handle local variables Xi’s. Furtheremore, [16] consid-
ered only unconstrained problems, and [15] is applicable only to spe-
cific network topologies (e.g., digraphs that admit a doubly stochas-
tic adjacency matrix). Finally, there are few works [18–21] focusing
on specific DL formulations [special cases of P]; however their theo-
retical convergence remains an open question, and numerical results
therein are contradictory. For instance, some schemes are shown to
not converge while some others fail to reach asymptotic agreement
among the local copies of the dictionary (see, e.g., [22]).

In this paper we address all the above challenges and propose the
first distributed algorithmic framework with provable convergence
to stationary solutions of P. To cope with i) and ii) we introduce a
general convexification-decomposition technique that hinges on our
recent SCA methods [23,24], coupled with a gradient tracking mech-
anism, instrumental to locally estimate the missing global informa-
tion. After updating their local copy of the common dictionary D
and their local variables Xi, all agents communicate some informa-
tion to their neighbors. This is done using a novel broadcast proto-
col that requires neither a specific network topology nor the use of
double-stochastic consensus matrices to work [addressing thus chal-
lenge iii)]; only column stochasticity is needed. Asymptotic conver-
gence to (stationary) solutions of P is established, without requiring
any boundedness of the (first or second) derivatives of fi’s [chal-
lenge iv)]. Preliminary numerical results, show that the proposed
scheme compare favorably with state-of-the-art algorithms.

2. MODEL: DECENTRALIZED DL
Consider Problem P under the following blanket assumptions.
Assumption A (On problem P)
(A1) D ⊆ RM×K is convex, compact; and each Xi ⊆ RK×ni is

closed, convex (not necessarily bounded), with
∑
i ni = N ;

(A2) G and gi are a convex (nonsmooth) functions over an open
set containing D and Xi, respectively; furtheremore, if Xi is
not bounded, then gi must be strongly convex.

Assumptions above are standard and satisfied by several instances of
Problem P; some representative examples are given next.
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Example#1:Elastic net sparse DL: Sparse approxima-
tion of a signal over a dictionary is one of the most studied DL
problems [25]. When the sparsity-inducing elastic net regularizer is
used [5], the problem can be written in the form P, with the follow-
ing choices: G(D) = 0; gi(Xi) = λ ||Xi||1 + µ ||Xi||2F , for some
given λ, µ > 0; D = {D : ||Dek||2 ≤ α, k = 1, 2, . . . ,K}, with
α > 0; and Xi ⊆ RK×ni . The elastic net regularization tends to
be preferred to the plain `1 (a.k.a. LASSO) penalty, especially when
there are highly correlated variables, because in contrast to LASSO
it better preserve group patterns in the variables.

Example#2:Sparse SVD [7]: Computing the sparse SVD
of a set of data is the foundation for many applications of multivari-
ate analysis. Problem P can be used to impose sparseness on sin-
gular vectors setting: G(D) = λD||D||1; gi(Xi) = λX ||Xi||1 +
µ ||Xi||2F , for some given λD, λX , µ > 0; D = {D : ||Dek||2 ≤
α, k = 1, 2, . . . ,K}, with α > 0; and Xi ⊆ RK×ni .
Example#3:Max-norm low-rank decomposition: The
max-norm was proposed as a convex regularizer and shown to be em-
pirically superior to the renowned trace-norm for collaborative filter-
ing problems [26]. The low-rank approximation problem based on
the max-norm regularization [27] is an instance of P with: G(D) =
0; gi(Xi) = 0; D = {D : ||D||2,∞ ≤ B}; and Xi = {Xi :
||XT

i ||2,∞ ≤ B} with some B > 0.

Network Topology. We study Problem P under the following net-
work setting. Time is slotted, and in each time-slot ν, the network of
the I agents is modeled as a digraph Gν = (V, Eν), where the set of
vertices V = {1, . . . , I} represents the set of agents, and the set of
edges Eν , {(i, j) : agent j can receive information from agent i
at time slot ν} represents the (possibly) time-varying directed com-
munication links. The in-neighborhood of agent i ∈ V at time ν is
defined as N in

i [ν] = {j ∈ V|(j, i) ∈ Eν} ∪ {i} whereas its out-
neighborhood is N out

i [ν] = {j ∈ V| (i, j) ∈ Eν} ∪ {i}. In words,
agent i can receive information from its in-neighborhood members,
and send information to its out-neighbors. The out-degree of agent i
is defined as dνi ,

∣∣N out
i [ν]

∣∣, where
∣∣N out

i [ν]
∣∣ denotes the cardinal-

ity of the set of out-neighborhood. To let information propagate over
the network, we assume that the sequence {Gν}ν possesses some
“long-term” connectivity property, as stated next.

Assumption B (B-strongly connectivity). The graph sequence {Gν}ν
is B-strongly connected, i.e., there exists an (arbitrarily large) inte-
gerB > 0 (unknown to the agents) such that the graph with edge set
∪(k+1)B−1
t=kB Et is strongly connected, for all k ≥ 0.

In words, Assumption B says that information sent by any agent i at
any time ν can reach any agent j within the next B time slots.

3. ALGORITHMIC DESIGN

We start introducing an informal description of the algorithm. Each
agent i maintains a local copy D(i) of the common dictionary D
and controls also its own local variables Xi; (D(i),Xi) needs to be
updated so that asymptotically 1) all D(i)’s reach a consensus, i.e.,
D(i) = D(j), i 6= j; and (D(i),Xi)’s are stationary solutions of
P. This can be achieved by leveraging on SCA techniques (Step 1
below) and a novel broadcast protocol (Step 2), as described next.
Step 1: Local updates: At iteration ν, to update (Dν

(i),X
ν
i ), agent i

should solve P. However, fi is not convex (but bi-convex) in (D(i),Xi),
and

∑
j 6=i fj is unknown. The former issue naturally suggests to up-

date D(i) and Xi in an alternating fashion. Thus, fixing Xi = Xν
i ,

agent i solves first the following (strongly) convex problem on D(i):

D̃ν
(i), argmin

D(i)∈D
f̃i(D(i); D

ν
(i),X

ν
i ) + 〈Π̃ν

i ,D(i)−Dν
(i)〉+G(D(i)),

(1)
where f̃i(•; Dν

(i),X
ν
i ) is a suitable strongly convex approximation

of fi(•,Xν
i ) at the current iterate (Dν

(i),X
ν
i ); and the second term

accounts for the lack of knowledge of
∑
j 6=i fj : Π̃ν

i aims at tracking
the gradient of

∑
j 6=i fj . In Step 2 below we will show how to update

Π̃ν
i so that ‖Π̃ν

i −
∑
j 6=i∇Dfj(D

ν
(i),X

ν
j )‖ −→

ν→∞
0 while using

only local information. Since fi is convex in D(i) a natural choice
for the surrogate f̃i in (1) is

f̃i(D(i); D
ν
(i),X

ν
i ) = fi(D(i),X

ν
i ) +

τνD,i
2
||D(i) −Dν

(i)||2F , (2)

where the quadratic term, with τνD,i > 0, serves the purpose of mak-
ing f̃i strongly convex. Other choices of f̃i alleviating the computa-
tional cost of computing D̃ν

(i) are discussed in Sec. 3.2.
Given D̃ν

(i), agent i updates D(i) moving along the direction
D̃ν

(i) −Dν
(i) by a step-size γν > 0 (to be determined)

Uν
(i) = Dν

(i) + γν(D̃ν
(i) −Dν

(i)). (3)

Now we consider the update of the local variables Xν
i . Fixing

D(i) = Uν
(i), agent i solves the following strongly convex optimiza-

tion problem for Xi:

Xν+1
i , argmin

Xi∈Xi
h̃i(Xi; U

ν
(i),X

ν
i ) + gi(Xi) (4)

where h̃i(•; Uν
(i),X

ν
i ) is a suitable strongly convex approximation

of fi(Uν
(i), •). Again, a natural choice for h̃i is fi itself:

h̃i(Xi; U
ν
(i),X

ν
i ) = fi(U

ν
(i),Xi) +

τνX,i
2

∥∥Xi −Xν
i

∥∥2
F

(5)

with τνX,i > 0. Other choices are discussed in Sec. 3.2.
Step 2: Broadcasting. We need to introduce now a mechanism to
ensure that the local estimates D(i)’s eventually agree while each
Π̃ν
i tracks the gradients

∑
j 6=i∇Dfj(D

ν
(i),X

ν
(j)). Building on [17],

consensus over time-varying digraphs without requiring the knowl-
edge of the sequence of digraphs and a double-stochastic weight ma-
trix can be achieved employing the following broadcasting protocol:
given Uν

(i), each agent i updates its own local estimate Dν
(i) together

with one extra scalar variable φi according to

φν+1
i =

∑
j∈N in

i [ν]

aνij φ
ν
j and Dν+1

(i) =
1

φν+1
i

∑
j∈N in

i [ν]

aij φ
ν
jU

ν
(j)

(6)
where φ0

i = 1, for all i; and aνij’s are some weighting coefficients
matching the graph Gν in the following sense.
Assumption C (On the weighting matrix). For all ν ≥ 0, the
matrices Aν , (aνij)i,j are chosen so that
(C1) aνii ≥ κ > 0 for all i = 1, . . . , I;
(C2) aνij ≥ κ > 0, if (j, i) ∈ Eν ; and aνij = 0 otherwise;
(C3) Aν is column stochastic, i.e., 1TAν = 1T .
Some practical rules satisfying the above assumption are given in
Sec. 3.2. Here, we only remark that Aν need only be column stochas-
tic, which is a much weaker condition than the double-stochasticity,
required by most of the papers in the literature [8,15,28]. This can be
achieved thanks to the extra variables φni in (6), whose goal roughly
speaking is to dynamically build the missing row-stochasticity.

A similar scheme can be put forth to update Π̃ν
i ’s in (1), build-

ing on the gradient tracking mechanism, first introduced in our work
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Algorithm 1 : Decentralized Dictionary Learning (D2L)

Data : X0
i ∈ Xi, D0

(i) ∈ D, φ0
i = 1, Θ̃0

i = ∇Dfi(D0
(i), X0

i ),

Π̃0
i = I · Θ̃0

i −∇Dfi(D0
(i),X

0
i ), for all i; set ν = 0;

S1. If (Dν
(i),X

ν
i ) satisfies stopping criterion for all i’s: STOP;

S2. Local Updates: Each agent i computes:

(a) D̃ν
(i) and Uν

(i) according to (1) and (3);

(b) Xν+1
i according to (4);

S3. Broadcasting: Each agent i collects data from its current
neighbors and updates:

(a) φν+1
i and Dν+1

(i) according to (6);

(b) Θ̃ν+1
i and Π̃ν+1

i according to (7) and (8);

S4. Set ν + 1→ ν, and go to S1.

[15], and leveraging the broadcast protocol in (6). Specifically, each
agent i maintains an extra (matrix) variable Θ̃i and update Θ̃ν

i and
Π̃ν
i according to

Θ̃ν+1
i =

1

φν+1
i

∑
j∈N in

i [ν]

aνijφ
ν
j Θ̃

ν
j

+
1

φν+1
i

(
∇Dfi(Dν+1

(i) ,Xν+1
i )−∇Dfi(Dν

(i),X
ν
i )
)
,

(7)
with Θ̃0

i , ∇Dfi(D0
(i),X

0
i ); and

Π̃ν+1
i = I · Θ̃ν+1

i −∇Dfi(Dν+1
(i) ,Xν+1

i ). (8)

Note that the update of Θ̃i and Π̃i can be performed locally by agent
i, with the same signaling as for (6). One can show that if Dν

(i)’s
and Θ̃ν

i ’s are consensual (a fact that is proved in Th. 1), ‖Π̃ν
i −∑

j 6=i∇Dfj(D
ν
(i),X

ν
j )‖ −→

ν→∞
0.

We can now formally introduce the proposed algorithm which
is described in Algorithm 1. We discuss next the key properties of
Algorithm 1 along with its convergence.

3.1. Convergence of Algorithm 1
In Algorithm 1, there are some parameters to be tuned, namely: i) the
step-size sequence {γν}ν ; and ii) the proximal coefficients {τνX,i}ν
and {τνD,i}ν . While several choices are possible for the aforemen-
tioned quantities, some minimal conditions need to be satisfied to
guarantee convergence of Algorithm 1 as well as asymptotic con-
sensus. More specifically, we need the following.
Assumption D (On the free parameters). Suppose that {γν}ν ,
{τνX,i}ν and {τνD,i}ν are chosen such that

(D1) γν ∈ [0, 1], for all ν ≥ 1;
∑∞
ν=1 γ

ν =∞; and
∑∞
ν=1 (γν)2 <

∞;

(D2) Each τνX,i = max(ε, σmax(Uν
(i))

2) and τνD,i = ε̃, where ε and
ε̃ are positive arbitrary constants, and σmax(Uν

(i)) denotes the
maximum singular value of Uν

(i).

We can now provide the main convergence result for Algorithm
1, as stated in the next theorem, (the proof can be found in [29]).

Theorem 1. Let {(Dν
(i),X

ν
i )Ii=1}ν be the sequence generated by

Algorithm 1 and let D
ν
, 1

I

∑I
i=1 φ

ν
iD

ν
(i), and Xν , (Xν

i )Ii=1.
Suppose that Assumptions A-D are satisfied, then, the following holds:

(1) {(Dν
,Xν)}ν is bounded and every limit point is a stationary so-

lution of Problem P;and (2) all {Dν
(i)}ν asymptotically reach con-

sensus, i.e., limν→∞ ||Dν
(i) −D

ν || = 0, for all i = 1, 2, . . . , I .
Roughly speaking, Theorem 1 states two main results: 1) (subse-
quence) convergence of (D

ν
,Xν) to a stationary solution of P; and

2) asymptotic agreement of all Dν
(i) on the common value D

ν
.

3.2. Discussion
Theorem 1 offers some flexibility in the choice of the free parameters
−the surrogate functions f̃i and h̃i, the consensus coefficients Aν ,
the step-size sequence {γν}ν , and the proximal coefficients {τνX,i}ν
and {τνD,i}ν−which can be exploited to achieve the desired trade-off
between the cost of the local optimization and the practical conver-
gence. Some of these choices are briefly discussed next.
On the choice of f̃i and h̃i: The surrogates f̃i and h̃i de-
fined in (2) and (5), respectively, lead to strongly convex (gener-
ally nonsmooth) subproblems, which can be solved using standard
solvers. However, when specific penalty functionsG and gi are con-
sidered, appropriate choices of f̃i and h̃i can lead to closed form
solutions of subproblems (1) and (4). We elaborate on this consider-
ing next, as case-study, the elastic net sparse DL problem, described
in Example #1 [cf. Sec. 2]; other examples can be found in [29]. If
the surrogate f̃i in (1) is chosen as linearization of fi with respect to
D(i), that is,

f̃i(D(i); D
ν
(i),X

ν
i ) =

〈
∇Dfi(D(i),X

ν
i ),D(i) −Dν

(i)

〉
(9)

+
τνD,i

2
||D(i) −Dν

(i)||2F ;

problem (1) will have the following closed form solution:

D̃ν
(i) = PD

[
Dν

(i) −
1

τνD,i

(
∇Dfi(Dν

(i),X
ν
i ) + Π̃ν

i

)]
. (10)

Let us consider now the sparse coding subproblem (4). If h̃i is
chosen as in (5), the update of the local variables Xν+1

i reduces to
solving a LASSO problem; see, e.g., [23,24] for recent efficient algo-
rithms for large-scale LASSO problems. To avoid solving a LASSO
problem, one can use as surrogate function h̃i the linearization of fi
with respect to Xi, that is,

h̃i(Xi; U
ν
(i),X

ν
i ) =

〈
∇Xifi(U

ν
(i),X

ν
i ),Xi −Xν

i

〉
(11)

+
τνX,i

2

∥∥Xi −Xν
i

∥∥2 ,
which leads to the following closed form solution of (4): introducing
the soft-thresholding operator Tθ(x) , max(|x| − θ, 0) · sign(x)
[with sign(·) denoting the sign function], we have.

Xν+1
i =

τνX,i
µ+ τνX,i

T λ
τν
X,i

(
Xν
i −

1

τνX,i
∇Xifi(U

ν
(i),X

ν
i )

)
, (12)

where T is applied componentwise. We remark that the convergence
results stated in Theorem 1 remain valid also for the aforementioned
new choices of surrogate functions; see [29].
On the choice of matrix Aν: A valid matrix Aν satis-
fying Assumption C is the following: aνij = 1/dνj if j ∈ N in

i [ν],
and aνij = 0 otherwise, where dνj is the out-degree of agent j at time
ν. The message passing protocol in (6) and (7) based on this matrix
can be easily implemented: all agents only need to i) broadcast their
local variables normalized by their current out-degree; and ii) collect
locally the information coming from their neighbors.
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Fig. 1. D2L versus ATC: objective function (left), consensus dis-
agreement (center), and distance from stationarity (right) versus the
total number of communication exchanges per node.

On the choice of the step-size: Several options are
possible for the step-size sequence {γν}ν satisfying the standard
diminishing-rule D1; see, e.g., [30]. Here, we only recall one rule
used in our experiments that we found very effective, namely [23]:
γν = γν−1(1− εγν−1) with γ0 ∈ (0, 1] and ε ∈ (0, 1/γ0).

Remark 2 (Extensions). While we considerd problems P with quadratic
loss penalty, our framework and convergence analysis can be read-
ily extended to more general bi-convex loss functions fi. This pre-
mits to apply our algirithm to a varity of other problems, including
Supervised Dictionary Learning [3], Principal Component Pursuit
[31], Robust Non-negative Sparse Matrix Factorization, Discrimina-
tive Label Consistent Learning [32], and Locality-constrained Linear
Coding. We refer the interested reader to [29] for details.

4. NUMERICAL RESULTS
In this section we test the proposed algorithm on an instance of the
elastic net sparse DL problem, described in Example #1. Specifi-
cally, we consider the task of denoising (boat) image of 512 ×
512 pixels, corrupted by AWGN; the SNR (PSNR) is 15 db (20.34
db). We simulated a network modeled as a digraph composed of
300 agents, clustered in 10 groups; we generate a “sparse” digraph
wherein the odds that a node is in neighborhood of its cluster-mate
peer is 0.3 whereas the odds that it is linked to a node out of the clus-
ter is 3e−2. In this distributed setting, given the image of 512×512
pixels, we extract about 255 thousands square sliding ps × ps pixel
patches (ps = 8); we aggregate the vectorized extracted patches in a
single data matrix S of size 64 × 255, 150. The sizes of the dictio-
nary is 64×64 whereas the sparse representation matrices Xi about
64× 850. We set λ = 1/ps and µ = λ.

We compare the proposed D2L, based on the surrogate functions
in (9) and (11), with distributed ATC [21]. As a benchmark, we also
compare the denoising results of the two aforementioned algorithms
with the efficient centralized KSVD [33] (in our implementation we
used the package KSVD-Box v13). The setting of the two algo-
rithms is the following. For both algorithms, i) the diminishing step
size rule γν = γν−1(1 − εγν−1), with γ0 = 0.5 and ε = 1e − 2,
is used; ii) the weights (aνij)i,j in the consensus steps are computed
according to the rule described in Sec. 3.2;and iii) the local copies
D(i) are all initialized with random patches of local data partitions,
and Xi’s are initialized to zero.
Choice of Merit Functions. We compare the performance of the
distributed algorithms in terms of objective value, consensus dis-
agreemnt, and "proximity to stationarity" of the intermediate iter-
ates. We measure the distance from stationarity of P using [23, Prop.
8(b)]; it is not hard to check that ∆ν = ||vec(∆ν

D, {∆ν
X,i}i)||∞ is

a valid measure of stationarity, where

Fig. 2. D2L vs. ATC denoising after 300 message exchanges: (a)
corrupted image; (b) D2L; (c) ATC, (d) K-SVD.

∆ν
D = D

ν − PD

D
ν − 1

τ0

I∑
i=1

∇Dfi(D
ν
,Xν

i )

 ,
∆ν
X,i = Xν

i −
τ0

µ+ τ0
T λ
τ0

(
Xν
i −

1

τ0
∇Xifi(D

ν
,Xν

i )

)
.

(13)

In fact, ∆ν is continuous at any (D
ν
,Xν), and it is zero if and only

if (D
ν
,Xν) it is at a stationary solution of P. The achievement of an

agreement among the local estimates (Dν
(i))i is evaluated by com-

puting the consensus disagreement eν = ||vec(Dν − 1 ⊗D
ν
)||∞.

In Fig. 1 we plot the objective value, eν , and ∆ν achieved by the
two algorithms vs. the total number of communication exchanges
per node. For ATC, this number coincides with the iteration index ν
whereas for D2L it is 2ν. The figure clearly shows that the proposed
algorithm is much faster than ATC (or, equivalently, it require less
information exchanges), which is not even guaranteed to converge.
Note also that ATC does not seem to reach a consensus on the local
copies of the dictionary, whereas for our D2L scheme consensus is
reached quite early and then maintained. Finally, we observe that,
thanks to the closed form solution of the agents’ subproblems, the
computational cost per iteration of D2L is much less than that of
ATC, which instead requires to solve a LASSO problem at each iter-
ation. Fig. 2 shows the reconstructed images along with their PSNR
and MSE, after 300 message exchanges. It is interesting that not
only D2L outperforms ATC scheme in terms of image quality, but it
is also comparable with the output of the well developed centralized
KSVD algorithm (ksvdbox13).

5. CONCLUSIONS
The paper studied the distributed dictionary learning problem over
(possibly) time-varying directed networks. We proposed the first de-
centralized distributed algorithmic framework with provable conver-
gence for this class of problems. Preliminary numerical results show
promising performance for the proposed scheme. We remark that,
even though we focused exclusively on the dictionary learning prob-
lem, our scheme is applicable to a larger class of problems wherein
the objective function has a bi-convex structure.
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