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Abstract—We focus on the problem of distributed optimization for
multi-agent networks via distributed dual averaging (DDA) over an
evolving network of growing connectivity. It is known that the convergence
rate of DDA is influenced by the algebraic connectivity of the underlying
network, where better connectivity leads to faster convergence. However,
the effect of the growth of network connectivity on the convergence rate
has not been fully understood. This paper provides a tractable approach to
analyze the improvement in the convergence rate of DDA induced by the
growth of network connectivity. This analysis is applicable, for example,
to successive refinement strategies in massive multi-core optimizers where
an increasing number of local data passage edges are successively added
between cores in order to accelerate total run time. Compared to the
existing convergence results, our analysis gives tighter bounds on the
convergence of DDA over networks of growing connectivity. Numerical
experiments show that our analysis leads to orders of improvement for
evaluating convergence rate, which is not captured by existing analysis.

Keywords—Distributed optimization, dual averaging, graph Laplacian,
growing connectivity, multi-agent network.

I. INTRODUCTION

In recent years, distributed optimization has received extensive
attention. Network-structured optimization problems have found a
wide range of applications in parallel computing [1], [2], sensor
networks [3]–[5], and power grids [6]. Many such problems can
be formulated as a constrained minimization problem, in which the
network loss function is given as a sum of local objective functions
accessed by agents, e.g., cores in massive parallel computing. The
goal of distributed optimization is to find the solution of the network-
structured optimization problem using only local computation and
communication at each agent.

There has been a significant amount of research on developing
distributed computation and optimization algorithms in multi-agent
systems. Early research efforts focus on the design of consensus
or diffusion algorithms for distributed averaging, estimation and
filtering [7]–[14]. Triggered by diffusion adaptation and consensus
learning, distributed subgradient algorithms were proposed under
various scenarios, e.g., networks with communication delays, dynamic
topologies, link failures, and push-sum averaging protocols [15]–
[17]. In this paper, we focus on a distributed dual averaging (DDA)
subgradient algorithm [18], where the key ingredient of DDA is to
maintain a weighted average of subgradients throughout the network.

Recently, DDA-based subgradient algorithms have attracted great
attention in signal processing over networks, machine learning, par-
allel computation and online convex optimization [18]–[23]. In [18],
the convergence analysis of DDA was firstly developed for distributed
optimization over static networks. It was shown that there exists a
tight connection between the convergence rate of DDA and the alge-
braic connectivity (namely, the second-smallest Laplacian eigenvalue
[24]) of the underlying network topology. Although the convergence
of DDA with stochastic and time-varying communications has been
discussed in [18], such a convergence analysis assumes confined
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variations in network connectivity for dynamic networks such that
the convergence results developed for static networks can be applied.
As a result, in this paper we refer to the convergence analysis in [18]
as the static network approach.

The convergence of DDA over networks with time-varying
topologies was investigated in recent work [22], [23]. Given an
arbitrary time-varying sequence of network topologies, it is shown
in [22] that the convergence rate of DDA is loosely bounded by
the convergence of the least connected network in the sequence.
To further understand the effect of dynamic network connectivity on
the convergence of DDA, we focus on the convergence analysis of
DDA over networks of growing connectivity. The case of growing
connectivity is inspired by real-world scenarios. One compelling
example is in adaptive mesh parallel scientific computing where the
network corresponds to grid points in the mesh and optimization is
performed by solving partial differential equations over a domain
that is successively and adaptively refined over the network as time
progresses [25]. As another example, the accumulated connectivity of
online social networks increases over time when users establish new
connections (e.g., time-evolving friendship in Facebook or LinkedIn).
Another example arises in the design of resilient hardened physical
networks [26]–[29], where adding edges or rewiring existing edges
increases network connectivity and robustness to node or edge fail-
ures. Based on that, distributed optimization can be performed over
a sparse network of low computation and communication cost in the
beginning, and then over a sequence of well-designed networks for
improved convergence.

In this paper, we provide a novel convergence analysis of DDA
over networks with growing connectivity. There exist two major
contributions. First, we devise new methods for analyzing the effect
of network topologies with growing connectivity on the convergence
rate of DDA. Second, we provide a tractable approach to quantify the
improvement in convergence rate induced by the growth of network
connectivity. Extensive numerical results show an excellent agreement
between the empirical convergence behavior and our theoretical pre-
dictions. Compared to the existing convergence results, our analysis
leads to improved characterization of convergence rates.

II. PRELIMINARIES: GRAPH, DISTRIBUTED OPTIMIZATION AND
DISTRIBUTED DUAL AVERAGING

In this section, we provide background on graphical models for
multi-agent networks, the distributed optimization problem, and the
distributed dual averaging algorithm.

A. Graphical model for multi-agent networks

A graph yields a succinct representation of interactions among
agents or sensors over a network. Let Gt = (V, Et) denote a time-
varying undirected unweighted graph, where V is a node set with
cardinality |V| = n, and Et ⊆ [n]× [n] is an edge set at time t. For
simplicity, we denote by [n] the integer set {1, 2, . . . , n}. An edge
(i, j) ∈ Et indicates that there exists a communication link between
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agent i and agent j at time t. And a neighborhood of agent i is given
by Ni(t) = {j | (i, j) ∈ Et}.

A graph can be represented equivalently by an adjacency matrix
or a graph Laplacian matrix. Let At be the adjacency matrix of
Gt, where [At]ij = 1 for (i, j) ∈ Et and [At]ij = 0, otherwise.
Here [X]ij (or Xij) denotes the (i, j)-th entry of a matrix X. The
graph Laplacian matrix is defined as Lt = Dt − At, where Dt is
a degree matrix, whose i-th diagonal entry is given by

∑
j [At]ij .

The Laplacian matrix is always positive semidefinite, and has a zero
eigenvalue λn = 0 (eigenvalues are sorted in decreasing order of
magnitude) with eigenvector (1/

√
n)1, where 1 is the column vector

of ones. The second-smallest Laplacian eigenvalue λn−1 is known
as the algebraic connectivity [24], which is positive if and only if
the graph is connected, namely, there exists a communication path
between every pair of distinct nodes.

In this paper, we assume that each Gt is connected, and the re-
sulting algebraic connectivity λn−1(Lt) is monotonically increasing
over time, that is,

0 < λn−1(L0) ≤ λn−1(L1) ≤ . . . ≤ λn−1(LT ), (1)

where T is the length of time horizon.

B. Distributed optimization

We consider a convex optimization problem based on local
cost functions, each of which is associated with a node/agent. The
objective is to minimize the average cost over the network,

minimize f(x) :=
1

n

n∑
i=1

fi(x)

subject to x ∈ X ,
(2)

where x ∈ Rd is the optimization variable, fi is convex and L-
Lipschitz continuous1, and X is a closed convex set containing
the origin. A concrete example of (2) is a distributed estimation
problem, where fi is a square loss and x is an unknown parameter
to be estimated. A graph Gt imposes communication constraints of
distributed optimization. That is, each node i only accesses to the
local cost function fi and can communicate directly only with nodes
in its neighborhood Ni(t) at time t.

C. Distributed dual averaging (DDA)

Throughout this paper we employ the distributed dual averaging
algorithm [18] to solve the optimization problem (2) in a decentralized
manner. To be specific, each node i ∈ V performs the updates

zi(t+ 1) =
∑

j∈Ni(t)

[Pt]ji zj(t) + gi(t) (3)

xi(t+ 1) = arg min
x∈X

{
zi(t+ 1)Tx +

1

αt
ψ(x)

}
, (4)

where zi(t) ∈ Rd is an auxiliary variable for node i at time t, Pt ∈
Rn×n is a matrix of non-negative weights that preserves the zero
structure of the graph Laplacian Lt, gi(t) is a subgradient of fi(x)
at x = x(t), ψ(x) is a regularizer for stabilizing the update, and
{αt}∞t=0 is a non-increasing sequence of positive step-sizes. In (4),
ψ(x) is also known as a proximal function, which is assumed to be
1-strongly convex with respect to a generic norm ‖ ·‖, and ψ(x) > 0
and ψ(0) = 0. In particular, when ‖ · ‖ is the `2 norm, we obtain the
canonical proximal function ψ(x) = (1/2)‖x‖22.

1The L-Lipschitz continuity of f with respect to a generic norm ‖ · ‖ is
defined by |f(x)− f(y)| ≤ L‖x− y‖, for x,y ∈ X .

The weight matrix Pt in (3) is assumed to be doubly stochastic,
namely, 1TPt = 1T and Pt1 = 1. A common choice of Pt that
associates with the graph structure is given by

Pt = I− 1

2(1 + δmax,t)
Lt, (5)

where δmax,t is the maximum degree of Gt. Although many choices
of Pt are possible, it is often the case that Pt is constructed by Lt
[14], [18], [22], [23]. The considered Pt in (5) is corresponding to a
lazy random walk and is positive semidefinite [30]. For networks of
growing connectivity, from (1) and (5) we obtain

σ2(P0) ≥ σ2(P1) ≥ . . . ≥ σ2(PT ), (6)

where σ2(Pt) is the second-largest singular value of Pt.

III. MAIN RESULTS: CONVERGENCE ANALYSIS

In this section, we establish a theoretical connection between the
growing connectivity and the convergence rate of DDA. It is known
from [18] that for each agent i ∈ [n], the convergence of the running
local average x̂i(T ) = (1/T )

∑T
t=1 xi(t) to the solution of problem

(2), denoted by x∗, is governed by two error terms: a) optimization
error common to subgradient algorithms, and b) network penalty
due to the cost of node communications. We summarize the basic
convergence result in Theorem 1.

Theorem 1 [18, Theorem 1]: Given the updates (3) and (4),
the difference f(x̂i(T )) − f(x∗) for i ∈ [n] is upper bounded as
f(x̂i(T ))− f(x∗) ≤ OPT + NET. Here

OPT =
1

TαT
ψ(x∗) +

L2

2T

T∑
t=1

αt−1, (7)

NET =

T∑
t=1

Lαt
T

(
2

n

n∑
j=1

‖z̄(t)− zj(t)‖∗+‖z̄(t)− zi(t)‖∗

)
, (8)

where z̄(t) = (1/n)
∑n
i=1 zi(t), and ‖ · ‖∗ is the dual norm2 to ‖ · ‖.

�

Note that the optimization error (7) can be made arbitrarily small
for a sufficiently large T and an appropriate αt, e.g., αt ∝ 1/

√
t.

The network penalty (8) measures the deviation of each node’s local
estimate from the average consensus value. In what follows, we
will bound (8) under the condition (6), induced by the increasing
connectivity.

Let Φ(t, s) denote the product of time-varying stochastic matri-
ces, namely, Φ(t, s) = PtPt−1 × · · · ×Ps, where s ≤ t. To bound
(8), we begin by relating σ2(Φ(t, s)) to {σ2(Pt)}. This is formally
stated as a lemma.

Lemma 1: Given Φ(t, s) = PtPt−1 × · · · ×Ps, we obtain

σ2(Φ(t, s)) ≤
t∏
i=s

σ2(Pi), (9)

where σ2(M) is the second largest singular value of a matrix M.

Proof: The proof is reported in [31, Appendix A]. �

Based on Theorem 1 and Lemma 1, Proposition 1 below shows
that the upper bound on the network penalty (8) is controlled by the
spectral gap (1− σ2(P0)) and its temporal variation given by (6).

2‖v‖∗ := sup‖u‖=1v
Tu.
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Proposition 1: Under the growing connectivity condition (6) and
zi(0) = 0 for i ∈ [n], the network penalty (8) is bounded as

NET ≤
T∑
t=1

L2αt
T

(
6

⌈
log T

√
n

1− σ2(P0)
− log β∗−1

1− σ2(P0)

⌉
+ 9

)
, (10)

where dxe gives the smallest integer that is greater than x, and β∗ is
the solution of the optimization problem

minimize
β

δ :=

⌈
log T

√
n

log σ2(P0)−1
− log β−1

log σ2(P0)−1

⌉
(11a)

subject to
δ−1∏
i=0

σ2(Pi) ≤ βσ2(P0)δ (11b)

1

T
√
n
< β ≤ 1. (11c)

Proof: The proof is reported in [31, Appendix B]. �

Before delving into interpreting Proposition 1, we elaborate on
the optimization problem (11). Here the variable β describes the
temporal variation of σ2(Pt) against σ2(P0), and δ denotes the
objective value. The objective function (11a) implies that δ ≥
log (βT

√
n)/log σ2(P0)−1, namely, βσ2(P0)δ ≤ 1/(T

√
n). One

can understand that δ quantifies the temporal mixing time incurred by
networks of growing connectivity so that

∏δ−1
i=0 σ2(Pi) ≤ 1/(T

√
n).

The constraint (11b) implies that the more the connectivity of a
network grows, the smaller β becomes. In (11c), the lower bound
on β stems from δ ≥ 1, and the upper bound is due to the growth
of network connectivity. We finally remark that β = 1 is a feasible
point to problem (11), and the optimal β is achieved by searching for
the interval (1/T

√
n, 1] until δ given by (11a) is minimized and the

inequality (11b) is satisfied.

Proposition 1 reveals a tight connection between the convergence
rate of DDA and the spectral properties of the time-varying network
through β∗ and 1 − σ2(P0). For example, if the network is static,
namely, σ2(Pt) = σ2(P0) for t ∈ [T ], we obtain β∗ = 1 from (11),
and the right hand side of (10) reduces to the error bound proposed
by [18]. Based on (5), the spectral gap 1 − σ2(P0) can be easily
associated with the algebraic connectivity λn−1(L0). Combining
Theorem 1 and Proposition 1, we present the convergence rate of DDA
over networks of growing connectivity in Theorem 2.

Theorem 2: Under the hypotheses of Theorem 1, ψ(x∗) ≤ R2,
and αt ∝ R

√
1− σ2(P0)/(L

√
t), we obtain for i ∈ [n]

f(x̂i(T ))− f(x∗) = O

(
RL√
T

⌈
log T

√
n√

λn−1(L0)
− log β∗−1√

λn−1(L0)

⌉)
,

(12)

where f = O(g) means that f is bounded above by g up to some
constant factor, and β∗ is the solution of problem (11). �

It is clear from (12) that the term log β∗−1/
√
λn−1(L0) is

introduced due to the growth of connectivity, where β decreases as
the connectivity grows at a faster rate. When β∗ = 1, the function
error (12) reduces to that of [18] when the network is static. That is,

f(x̂i(T ))− f(x∗) = O
(
RL√
T

log T
√
n√

λn−1(L0)

)
.

IV. TOPOLOGY SWITCHING VERSUS CONVERGENCE TIME

To study the effect of the growth of network connectivity on the
convergence time of DDA, in this section we introduce a topology
switching rate to characterize the dynamics of the graph Laplacian

matrices of {Gt}. The time-varying graph Laplacian matrix is speci-
fied as follows.

Lt =


L0 t ∈ [0,∆]
L1 t ∈ [∆ + 1, 2∆]
...

...
Lq t ∈ [q∆ + 1, T ],

(13)

where λn−1(Li+1) > λn−1(Li) for i ∈ [q], and ∆ is the length
of time interval during which the graph Laplacian matrix remains
unaltered. In (13), the quantity 1/∆ gives the topology switching
rate, where the smaller ∆ is, the faster the connectivity increases. In
an extreme case of ∆ = T , the network becomes static with Lt = L0

for t ∈ [T ].

Using (11a), the convergence rate given by Theorem 2 becomes

f(x̂i(T ))− f(x∗) = O
(
RL√
T
δ∗
)
, i ∈ [n]. (14)

where δ∗ :=

⌈
log T

√
n√

λn−1(L0)
− log β∗−1√

λn−1(L0)

⌉
is directly proportional

to ∆, since a small ∆ (fast growing of network connectivity) leads
to a fast mixing Markov chain that yields small β∗ and δ∗. For
ease of analysis, we assume that δ∗ = ∆τ , where the convergence
of DDA at ∆ = T implies τ < 0.5 from (14). We then obtain
from (14) that at most O(∆2τ/ε2) iterations are required to achieve
an ε-accurate solution. Compared to the convergence time under a
static topology derived in [18], Proposition 2 shows a relative gain for
the improvement in convergence time under the switching topology
model (13). Moreover, extensive numerical results in Sec. V show that
the empirical convergence time is well aligned with the theoretical
prediction, which is not captured by existing convergence analysis.

Proposition 2: Let Ts and Td denote the number of iterations
required to achieve an ε-accurate solution under a static topology L0

and a time-varying topology Lt in (13), respectively. If δ∗ = ∆τ ,
the relative gain for the improvement in convergence time is given
by (Ts − Td)/Ts = 1−∆2τ/T 2τ

s .

Proof: Based on the analysis in [18], it is known that Ts = Cs/ε
2,

where Cs is a constant independent of ε. Based on (14) and δ∗ = ∆τ ,
we have Td = Cd∆2τ/ε2, where Cd is a constant independent of
∆ and ε. Since Ts = Cs/ε

2 = CdT
2τ
s /ε2 when ∆ = Ts, we obtain

Cs/Cd = T 2τ
s . And thus the relative gain is (Ts − Td)/Ts = 1 −

∆2τCd/Cs = 1−∆2τ/T 2τ
s . �

Proposition 2 implies that 0 ≤ (Ts − Td)/Ts ≤ (1 − 1/T 2τ
s ),

where the left hand side is achieved when ∆ = Ts, and the right
hand side is achieved when ∆ = 1. As a result, our analysis explicitly
characterizes the relation between growing network connectivity and
convergence of DDA, whereas the existing convergence analysis
(i.e., Ts) in [18] is insensitive to networks of growing connectivity.
Moreover, our analysis shows that the improvement in convergence
time can be significant if the network connectivity increases rapidly
(i.e., the case of small ∆).

V. NUMERICAL RESULTS

In this section, numerical experiments are conducted to validate
the above theory on convergence behavior of DDA over networks with
growing connectivity. We will show that the empirical convergence
behavior matches our theoretical predictions.

To specify a distribution optimization problem of the form in (2),
we consider an `1 regression loss function fi(x) = |yi − bTi x| for
i ∈ [n], and X = {x ∈ Rd | ‖x‖2 ≤ R}, where {yi} and bi are data
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points drawn from normal distribution, n = 100, d = 5, and R = 5.
We note that fi is L-Lipschitz continuous, where L = maxi ‖bi‖2.
For the underlying network model, we consider both k-regular ring
network and random geometric graph [32]. The examples are given
in Fig. 1. For a k-regular ring network, the connectivity grows by
increasing k with respect to the switching topology model in (13).
For a random geometric graph, since any two nodes separated by a
distance less than some radius r > 0 are connected, we can increase
r to obtain networks of growing connectivity with respect to (13).
In the distributed dual averaging algorithm, we set Pt as in (5), and
choose stepsizes αt ∝ 1/

√
t.

3-regular ring network Random geometric graph with r = 0.2

Fig. 1: Examples of 3-regular ring network and random geometric graph with
r = 0.2 in a unit square region.

In Fig.2, we present the function error maxi[f(x̂i(t)) − f(x∗)]
versus the iteration index t ∈ [T ] for both k-regular ring network and
random geometric graph with a varying ∆, where T = 4000. We
recall from (13) that the parameter ∆ governs the growing speed of
network connectivity. For comparison, we also plot the convergence
trajectory under the static network topology assumption in [18], which
is a special case of our analysis when ∆ = T . As we can see, when ∆
is small (namely, the connectivity increases fast), the convergence rate
is significantly improved. This result is consistent with the theoretical
implications in Theorem 2 and Proposition 2. Even with a relatively
large ∆ (say ∆ = 500), the convergence performance improves as
compared to the case of static network topology.
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Fig. 2: Function error versus iterations for different values of ∆: a) k-regular
ring network, and b) random geometric graph. These trends are consistent with
the predictions of Theorem 2 and Proposition 2.

In Fig.3, we present the function error maxi[f(x̂i(T ))− f(x∗)]
(T = 4000) versus the value of ∆ for both k-regular ring network
and random geometric graph. We also plot the predicted function
error given by (12) (scaled up to constant factor). As we can see,
the function error decreases as ∆ decreases due to the benefits of
successively increased network connectivity. Further, we observe an
excellent agreement between empirical function errors and theoretical
predictions (Theorem 2) in all cases.
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Fig. 3: Empirical and predicted function error at time T versus ∆: a)
k-regular ring network, and b) random geometric graph. These trends are
consistent with the predictions of Theorem 2.

Our final set of experiments investigates the convergence time of
distributed dual averaging for k-regular ring network with increasing
connectivity. In Fig.4-(a), we present the convergence time, in terms
of the number of iterations required to achieve maxi[f(x̂i(t)) −
f(x∗)] ≤ 0.1, as a function of ∆. Compared to the convergence time
under the static network assumption in [18], we observe a significant
improvement on convergence time induced by the growth of network
connectivity. In Fig.4-(b), we compare the empirical improvement on
convergence time to the theoretical prediction in Proposition 2 with
τ = 0.175. We observe that the empirical behavior is consistent with
our theoretical predictions.
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Fig. 4: Convergence time for k-regular ring network: a) number of iterations,
and b) improvement compared to static topology. These trends are consistent
with the predictions of Proposition 2.

VI. CONCLUSIONS

In this paper we have studied the distributed optimization problem
in a dynamic multi-agent network whose algebraic connectivity grows
over time. In this scenario, we have provided a novel convergence
analysis of distributed dual averaging that is commonly used to solve
the network-structured optimization problem. We have established a
tight connection between the improvement in convergence rate of
the algorithm and the growth speed of network connectivity. An
excellent agreement between the empirical convergence behavior and
our theoretical predictions has been shown via numerical results,
which are not captured by the previous convergence analysis. For
future work, we would like to relax the assumption of networks
with growing connectivity, and to study the convergence rate of
distributed optimization methods under both time-varying networks
and connectivity cost constrains.

4082



REFERENCES

[1] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[2] A. Pothen, “Graph partitioning algorithms with applications to scientific
computing,” in Parallel Numerical Algorithms, pp. 323–368. Springer,
1997.

[3] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gra-
dient method with a constant step size,” SIAM Journal on Optimization,
vol. 18, no. 1, pp. 29–51, 2007.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[6] F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex
oscillator networks and smart grids,” Proceedings of the National
Academy of Sciences, vol. 110, no. 6, pp. 2005–2010, 2013.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2003.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, June 2006.

[9] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks with imperfect communication: Link failures and channel
noise,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp.
355–369, Jan. 2009.

[10] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and tradeoffs,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp.
674–690, Aug. 2011.
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