
FAST FEASIBILITY PURSUIT FOR NON-CONVEX QCQPS VIA FIRST-ORDER METHODS

Aritra Konar and Nicholas D. Sidiropoulos

Dept. of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN

ABSTRACT

Quadratically Constrained Quadratic Programming (QCQP) is NP–
hard in its general non-convex form, but it frequently arises in en-
gineering design and applications ranging from state estimation to
beamforming and clustering. Several polynomial-time approxima-
tion algorithms exist for non-convex QCQP problems (QCQPs), but
their success hinges upon the ability to find at least one feasible point
– which is also hard for a general problem instance. In this paper, we
present a framework for computing feasible points of general non-
convex QCQPs using simple first-order methods. Our approach fea-
tures low computational and memory requirements, which makes it
well-suited for application on large-scale problems. Experiments in-
dicate the empirical effectiveness of our approach, despite currently
lacking theoretical guarantees.

1. INTRODUCTION

Non-convex QCQPs form an important class of optimization prob-
lems which find widespread application in various engineering dis-
ciplines [1]. As a result of the problem being NP–hard in its general
form [2], approximation algorithms are often employed to obtain
high quality, sub-optimal solutions in polynomial-time.

Amongst the most popular of these approximation strategies is
Semidefinite Relaxation (SDR) [3], which uses matrix lifting coupled
with rank relaxation to express the problem as a convex Semidef-
inite Program (SDP). When the SDP solution is not rank-1 (typi-
cal, except for specially structured QCQPs), then a post-processing
step is used to obtain a feasible solution for the original non-convex
QCQP. However, when the constraints involve indefinite matrices
and/or double sided inequalities, then such post-processing algo-
rithms typically fail to yield a feasible point, thereby limiting the
overall effectiveness of SDR – not to mention the potentially very
high complexity of solving the relaxed problem in SDP form.

Another approach is Successive Convex Approximation (SCA)
[4–7], which approximates the problem by a sequence of convex
subproblems initialized from a feasible point. Under certain con-
ditions, convergence of the SCA iterates to a stationary point can
be established. Although this framework is more generally appli-
cable to non-convex QCQPs compared to SDR, we point out that
computing an initial feasible point for general non-convex QCQP is
NP–Hard [2].

Hence, one can conclude that determining a feasible point of a
non-convex QCQP problem is the critical step for any approxima-
tion algorithm to succeed. Recently, an algorithm known as Feasi-
ble Point Pursuit (FPP)-SCA [8] was proposed specifically for this
task. FPP-SCA uses SCA in conjunction with auxiliary slack vari-
ables to approximate the feasibility problem by a sequence of convex

Contact: (konar006,nikos)@umn.edu. Supported in part by NSF CIF-
1525194, and the Univ. of Minnesota through a Doctoral Dissertation Fel-
lowship.

subproblems. The algorithm works even with random initialization,
as the slack variables ensure that each SCA subproblem is feasible
at every step. Empirically, FPP-SCA demonstrates highly effective
performance in attaining feasibility for general non-convex QCQPs.
Nonetheless, the algorithm is not without its drawbacks. For one,
it is required to iteratively solve a sequence of convex optimiza-
tion problems. Using general purpose conic-programming solvers,
this can be very computationally demanding. In addition, an eigen-
decomposition of all the matrices in the quadratic constraints has to
be performed, followed by storing the positive and negative definite
components in memory.

Thus, due to its inherently large computational and memory foot-
print, FPP-SCA is not well suited for solving problems in large di-
mensions and/or with a large number of constraints, which motivates
the development of low-complexity algorithms for feasible point pur-
suit. Towards this end, we propose a reformulation of the penalized
feasibility formulation employed by FPP-SCA, which is well-suited
for direct application of first-order methods (FOMs). The appeal
of using FOMs lies in the fact that they have minimal memory and
computational requirements relative to other optimization schemes,
which makes them well-suited for solving large-scale problems. Hence,
in this paper we will adopt a first-order based optimization approach
for the feasibility problem, instead of resorting to SCA. Our inter-
est in pursuing this approach is partially motivated from recent work
which established that FOMs work remarkably well for many im-
portant non-convex problems arising in matrix regression and struc-
tured matrix factorization [9–13], as well as generalized phase re-
trieval [14–16].

We note that a consensus-ADMM (C-ADMM) algorithm for
general non-convex QCQPs has been proposed in [17], which can
also be used for directly computing a feasible point. The major
drawback of this method relative to our proposed approach is that C-
ADMM is very memory intensive, since one local copy of the global
optimization variable is created for every constraint. Furthermore,
we do not need to compute an eigen-decomposition of the constraint
matrices, which is a requirement common to both FPP-SCA and C-
ADMM. We use experimental evaluations to demonstrate the viabil-
ity of using FOMs as a competitive alternative to the SCA approach
for determining feasible solutions of general non-convex QCQPs via
feasibility pursuit. At present, we do not possess any theoretical
convergence results for our methods. In spite of this, simulations
indicate the very favorable performance of our approach.

2. PROBLEM STATEMENT

In this paper, we consider quadratic feasibility problems of the form

find
x∈X

x (1a)

s.t. xTAmx− bm ≤ 0, ∀m ∈MI (1b)

xTCmx− dm = 0, ∀m ∈ME (1c)

4064978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

where X ⊂ RN is a simple1, compact, convex set, while MI :=
{1, 2, · · · ,MI} and ME := {1, 2, · · · ,ME} represent the set of
inequality and equality constraints respectively. The constraint ma-
trices {Am}MI

m=1 and {Cm}ME
m=1 are assumed to be symmetric, while

{bm}MI
m=1 and {dm}ME

m=1 are real numbers. In the special case where
ME = 0 (i.e., the equality constraints are absent), and Am �
0, ∀m ∈ MI , (1) reduces to a convex feasibility problem, for
which (in)feasibility can be established in polynomial-time [18]. How-
ever, the general case of (1) is a non-convex optimization problem
due to the presence of the quadratic equality constraints ME and
the inequality constraints MI involving possibly indefinite matri-
ces, and is known to be NP–Hard.

One approach for establishing the (in)feasibility of a given in-
stance of (1) is to consider the following optimization problem.

min
x∈X , sI∈RMI ,

sE∈RME

MI∑
m=1

sI(m) +

ME∑
m=1

sE(m) (2a)

s.t. xTAmx− bm ≤ sI(m), (2b)
sI(m) ≥ 0, ∀m ∈MI (2c)

− sE(m) ≤ xTCmx− dm ≤ sE(m), (2d)
sE(m) ≥ 0, ∀m ∈ME (2e)

where we have defined sI := [sI(1), · · · , sI(MI)]
T and sE :=

[sE(1), · · · , sE(ME)]T as vectors of non-negative slack variables
corresponding to the inequality and equality constraints respectively,
with one slack variable being added to each constraint in order to
ensure the feasibility of the overall problem. Note that the value of
each slack variable corresponds to the degree of violation of the con-
straint with which it is associated. The `1-norm cost function is used
to promote sparsity of the constraint violations. If an optimal solu-
tion (x∗, s∗I , s

∗
E) of (2) can be obtained for which s∗I = 0, s∗E = 0,

then x∗ is feasible for (1). Otherwise, (1) is infeasible and the spar-
sity pattern of s∗I and s∗E reveals the constraints which cause infea-
sibility. Nonetheless, computing an optimal solution of (2) remains
a challenging proposition since it is non-convex and is NP–Hard in
general.

In [8], the technique of SCA was used to approximate (2). In
this paper, we propose to eliminate the SCA procedure altogether
and instead focus on tackling (2) directly via FOMs. As a first step
in this direction, we equivalently reformulate (2) as

min
x∈X

{
F (x) :=

MI∑
m=1

(xTAmx− bm)+ +

ME∑
m=1

|xTCmx− dm|

}
(3)

where (x)+ := max{x, 0} and |x| denotes the absolute value of x.
Note that (2) can be obtained via the epigraph transformation of the
non-convex cost function of (3), thus establishing equivalence. The
reformulation results in a problem where all the non-convex con-
straints of (2) have been incorporated into the cost function, which
is composed of the sum of M := MI + ME non-convex, non-
smooth functions; each of which measures the degree of violation of
its corresponding constraint via a loss function (quadratic hinge-loss
for the inequality constraints and absolute value for the equality con-
straints). The non-differentiability of (3) prevents us from applying
FOMs (which are suited for minimizing smooth functions) directly
on this formulation. Consequently, we propose to make the follow-
ing modifications to (3).

First, we consider the hinge-loss functions corresponding to the

1By simple, we mean that Euclidean projections onto X can be computed
in closed form.

quadratic inequality constraints. Define fm(x) := (xTAmx −
bm)+, ∀ m ∈ MI . We now describe a procedure for construct-
ing a smooth surrogate for each fm(x). Note that each fm(x) can
be equivalently expressed as

fm(x) = max
0≤y≤1

{y(xTAmx− bm)}, ∀ m ∈MI (4)

In order to construct a smooth surrogate of fm(x), consider the fol-
lowing modified version of (4)

f (µ)
m (x) = max

0≤y≤1
{y(xTAmx− bm)− µy

2

2
}, ∀ m ∈MI (5)

where µ ∈ R > 0 is a smoothing parameter. The maximization
problem (5) can be solved in closed form (due to strong concavity)
to obtain the following equivalent smooth representation

f (µ)
m (x) =


0, if xTAmx ≤ bm
(xTAmx−bm)2

2µ
, if bm < xTAmx ≤ bm + µ

xTAmx− bm − µ
2
, if xTAmx > bm + µ

(6)

We point out that each f (µ)
m (x) has continuous derivatives given by

∇f (µ)
m (x) =


0, if xTAmx ≤ bm
2(xTAmx−bm)

µ
Amx, if bm < xTAmx ≤ bm + µ

2Amx, if xTAmx > bm + µ

(7)

Hence, f (µ)
m (x) is a smooth surrogate of fm(x),∀ m ∈MI . It can

also be shown that the following approximation bounds hold 2

f (µ)
m (x) ≤ fm(x) ≤ f (µ)

m (x) +
µ

2
, ∀ x, ∀ m ∈MI (8)

The smoothing technique we have employed is reminiscent of Nes-
terov smoothing [19], although here it is applied on non-convex func-
tions.

For the absolute value penalty functions gm(x) := |xTCmx−
dm|, ∀ m ∈ ME in (3) corresponding to the equality constraints,
we propose to replace them with quadratic penalty functions of the
form

g(q)m (x) := (xTCmx− dm)2, ∀ m ∈ME (9)
Following these steps, we obtain a non-convex, differentiable formu-
lation given by

min
x∈X

{
F (s)(x) :=

1

M

(
MI∑
m=1

f (µ)
m (x) +

ME∑
m=1

g(q)m (x)

)}
(10)

In the following section, we present a brief overview of the FOMs
we will apply on (10).

3. OVERVIEW OF FIRST ORDER METHODS

Consider the following optimization problem

min
x∈X

{
F (x) :=

1

M

M∑
m=1

fm(x)

}
(11)

where X ⊂ RN is a convex, compact set and each fm : RN → R
is a twice differentiable, non-convex function. When F is bounded
below over X , we can attempt to determine an approximate solution
for (11) using the classical gradient descent (GD) algorithm which

2Due to space constraints, we omit this proof. Nonetheless, it is straight-
forward to show this result via a replication of the arguments in [19].

4065

has the following update rule.

y(k) = x(k−1) − αk
M

M∑
m=1

∇fm(x(k−1)) (12a)

x(k) = ΠX (y(k)), ∀ k ∈ N (12b)
where ΠX (.) denotes the Euclidean projection operator onto X and
αk ∈ R > 0 is the step-size in the kth iteration.

Each step of GD requires the computation of M gradients, and
hence can be fairly expensive when M is large. As a low com-
plexity alternative, we can consider using stochastic gradient de-
scent (SGD). At each iteration k of SGD, we randomly draw an in-
dex mk from a uniform distribution defined on the index setM =
{1, · · · ,M} and then apply the following update rule

y(k) = x(k−1) − αk∇fmk (x(k−1)) (13a)

x(k) = ΠX (y(k)),∀ k ∈ N (13b)

Note that the expectation E(y(k)|x(k−1)) equals (12a) (where the
expectation is taken with respect to the random variablemk). Hence,
the SGD updates (13) are equivalent to standard GD updates in ex-
pectation. The advantage of SGD is that the updates are O(M)
cheaper compared to GD since at each iteration, we only need to
compute the gradient of a single component function.

A third alternative, which has emerged recently, is Stochastic
Variance Reduced Gradient (SVRG) [20, 21]. The SVRG algorithm
can be viewed as a hybrid between SGD and GD, and proceeds in
multiple stages. In each stage s, SVRG defines a “centering” vari-
able ys from the output of the previous stage and computes its full
gradient ∇F (ys). Next, a fixed number (say K) of modified inner
SGD iterations are executed, where in each iteration k ∈ {1, · · · ,K},
an index mk is drawn uniformly at random fromM and the follow-
ing update rule is used

x(0)
s = ys (14a)

v(k)
s = x(k−1)

s − α(k)
s (∇fmk (x(k−1)

s)−∇fmk (ys) +∇F (ys))
(14b)

x(k)
s = ΠX (v(k)

s),∀ k ∈ {1, · · · ,K} (14c)
where the superscript k denotes the inner SGD iteration counter
for stage s. Again, the expectation E(v

(k)
s |x(k−1)

s) equals (12a).
Hence, in expectation, the SVRG updates are also the same as GD
updates. The overall algorithm is given by

Algorithm 1 : SVRG
Initialization: Select number of stages S, update frequency K and
step-size sequence. Randomly generate a starting point z0 ∈ X .
Iterate: for s = 1, 2, · · · , S
• Set ys = zs−1

• Compute gs := ∇F (ys)

• Set x(0)
s = ys

• Iterate: for k = 1, · · · ,K
Randomly pick mk ∈ {1, · · · ,M} and update
v
(k)
s = x

(k−1)
s − α(s)

k (∇fmk (x
(k−1)
s)−∇fmk (ys) + gs),

x
(k)
s = ΠX (v

(k)
s)

• End
• Set zs = x

(K)
s

End
Return: zS

100 200 300 400 500 600 700 800
40

50

60

70

80

90

100

No. of constraints

F
ea

si
bi

lit
y

pe
rc

en
ta

ge
 (

%
)

SGD
SVRG
GD

(a) Feasibility percentage vs M

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

No. of constraints

G
ra

di
en

ts
/M

SGD
SVRG
GD

(b) Gradient evaluations (normalized) vs M

Fig. 1: Illustrative example for N = 100

The convergence behavior of these algorithms is determined by the
choice of the step-size sequence. We point out that several results
[22–28] have appeared recently which, under certain assumptions,
establish the convergence (both asymptotic and non-asymptotic) of
GD, SGD and SVRG to a stationary point of non-convex problems
of the form (11) for specific step-sizes. Due to space constraints,
we are unable to discuss at length the particulars of each such re-
sult. Nonetheless, it suffices to say that while the assumptions used
in some of these results do not hold in our case, in others, the dic-
tated choice of step-size is too small to be of practical use3. Hence,
we used empirically-tuned step-sizes in our experiments. Although
we cannot make any theoretical claims about the convergence of our
methods with these step-size rules, as we demonstrate in the fol-
lowing section, they exhibit very effective performance in attaining
feasibility.4

4. NUMERICAL RESULTS

We carried out our experiments in MATLAB on a Linux desktop
with 4 Intel i7 cores and 16GB of RAM. First, we present an ex-
periment on synthetic data, where we fixed the number of variables

3Most of these assumptions pertain to the (global or local) Lipschitz con-
stants of the cost function of (10) and its gradient. When such constants exist,
they are typically estimated via crude means which ultimately results in very
conservative step-sizes.

4We note that when achieving feasibility is the ultimate goal, convergence
to a stationary point of the feasibility problem may not be very interesting.

4066

to N = 100 and randomly drew QCQPs with varying number of
constraints. To be more precise, here we set ME = 0 (i.e., no equal-
ities) and varied M = MI from 100 to 800 in increments of 100.
In each instance, the constraint matrices {Am}Mm=1 were randomly
generated from a zero mean, i.i.d. Gaussian distribution with unit
variance and then symmetrized. In order to ensure that the problem
has a feasible solution, we randomly generated a unit norm vector
p and drew each of the right-hand sides {bm}Mm=1 from a Gaussian
distribution bm ∼ N (pTAmp, 1). In the event pTAmp > bm,
we multiplied both sides of the inequality by −1 to get ≤ inequal-
ities. In other words, we randomly generated a quadratic feasibil-
ity problem with indefinite matrices which possesses a unit-norm
feasible solution. We exploit this prior knowledge in our setup by
setting X = {x ∈ RN |‖x‖2 ≤ 1}. For each value of M , we
generated 1000 such instances. In each instance, we randomly gen-
erated a unit-norm vector which was used for initializing GD, SGD
and SVRG. We note that each method requires a different number
of gradient evaluations per iteration. Hence, for fair comparison,
we allocated a maximum budget of 1000M gradient evaluations for
each method. Of course, this implies that the maximum number of
iterations for each method is different, depending on the number of
gradients evaluated per iteration. In this case, the step-sizes used
were αk = 0.1/

√
(1 + k/M) for GD, αk = 0.1/

√
k for SGD,

and α(s)
k = 0.01/

√
1 + ((s− 1) ∗K + k)/M for SVRG while the

value of the smoothing parameter µ for the inequality constraints
was set to be 10−4. Furthermore, we set the update frequency pa-
rameter of SVRG to be K = 4M .

We plot the feasibility percentages averaged out over 1000 in-
stances in Figure 1a as a function of M while the average number of
(normalized) gradient evaluations required is depicted in 1b. Here,
we declared convergence to a feasible point once the cost function
(10) attained a value of ε = 10−6. It is evident that SGD demon-
strates the best overall performance in terms of feasibility percent-
age and computational complexity, with SVRG close behind. Inter-
estingly, we observe that the feasibility percentages of all methods
decrease as M is increased from 2N to 4N , but as M is increased
further, the feasibility percentages increase again. The complexity
curve also depicts a similar trend, i.e., the average number of iter-
ations for attaining feasibility increases with M initially, but then
decreases again. We have observed a similar phenomenon when this
experiment is repeated for different values of N . This observation
warrants further investigation, but as of this moment, we do not have
a complete explanation of this phenomenon.

Although we do not present a complete report of the wall time
results, the worst-case average time was 30 secs, 17 secs, and 20
secs for GD, SGD and SVRG respectively (corresponding to M =
4N). In contrast, FPP-SCA, even when applied on an instance with
M = N , required 15 minutes on average for a single iteration. 5

Given this fact, in this case, we are well justified in omitting FPP-
SCA from comparison. We also note that using C-ADMM as an
alternative to our approach would prove to be extremely memory
intensive. Overall, this showcases the effectiveness of our FOM-
based approach in terms of performance and scalability.

Next, we consider a specific case of a problem in low-rank ma-
trix regression. Here, the goal is to recover a rank-1 positive semidef-
inite matrix from random linear measurements, i.e., solve a problem

5Here, we implemented FPP-SCA using YALMIP [29] with SeDuMi [30]
as the solver of choice.

0 50 100 150 200 250 300 350
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Gradients/M

S
um

 o
f c

on
st

ra
in

t v
io

la
tio

ns

PF
SGD

Fig. 2: Cost function vs No. of normalized gradients

of the form
find
X�0,

rank(X)=1

X ∈ RN×N (15a)

s.t. trace(CmX) = dm, ∀m ∈ME (15b)
which, of course, is equivalent to solving a system of quadratic equal-
ities of the form

find
x∈RN

x (16a)

s.t. xTCmx = dm, ∀m ∈ME (16b)

In [9], it is shown that when the measurement matrices {Cm}ME
m=1

satisfy a version of the Restricted Isometry Property (RIP) [9, Defini-
ton 3.1], then GD applied on (10) (here MI = 0 and X = RN) with
spectral initialization (termed Procustes Flow (PF) by the authors)
provably converges to an optimal solution of (16) at a linear rate.
Assuming Gaussian measurements, Ω(N) measurements suffice for
guaranteeing recovery. We considered an experiment with N = 50
and M = ME = 200 (symmetric) measurement matrices drawn
from the spiked Gaussian random ensemble [9, Footnote 2] to com-
pare the performance of PF with our empirically tuned SGD method.
We plot the least-squares cost function versus the number of gradi-
ent evaluations required to achieve ε = 10−6 optimality for a single
representative realization in Figure 2 . Here, SGD is randomly ini-
tialized (standard Gaussian) with a step-size rule αk = 0.1/‖x(k)‖22
while PF is implemented as described in [9] with spectral initializa-
tion and a constant step-size. From the figure, the speedup offered
by SGD over PF is readily apparent, in spite of the fact that our ap-
proach currently lacks theoretical guarantees. We view these results
as promising and seek, in our future work, to address this point.

5. CONCLUSIONS

In this paper, we developed a framework for computing feasible
points of general non-convex QCQPs via simple first-order meth-
ods, which exhibit very effective performance on large-scale prob-
lems at low complexity relative to competing alternatives. In spite of
the lack of any theoretical guarantees in general, we demonstrated
a problem where our empirically-tuned SGD method with random
initialization outperforms a provably convergent GD method with
spectral initialization. We finally note that while feasible points can
be computed efficiently using our methods, iteratively refining the
solution via other approximation strategies (e.g., SCA) can still be
expensive for large scale QCQPs. We are currently working towards
extending our approach to cover this more general case.

4067

6. REFERENCES

[1] Z.-Q. Luo, and T.-H. Chang, “SDP relaxation of homogeneous
quadratic optimization: approximation bounds and applica-
tions”, in Convex Optimization in Signal Processing and Com-
munications, (D. Palomar and Y. Eldar, eds.), pp. 117–165,
Cambridge University Press, 2010.

[2] A. d’Aspremont, and S. Boyd, “Relaxations and Randomized
Methods for Nonconvex QCQPs,” EE392 Lecture Notes, Stan-
ford University, 2003.

[3] Z.-Q. Luo, W.-k. Ma, A.-C. So, Y. Ye and S. Zhang, “Semidefi-
nite relaxation of quadratic optimization problems,” IEEE Sig-
nal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[4] B. Marks and G. Wright, “A general inner approximation algo-
rithm for nonconvex mathematical programs,” Oper. Res., vol.
26, no. 4, pp. 681–683, 1978.

[5] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential para-
metric convex approximation method with applications to non-
convex truss topology design problems,” J. Global Optim., vol.
47, no. 1, pp. 29-51, 2010.

[6] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified conver-
gence analysis of block successive minimization methods for
nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp.
1126-1153, 2013.

[7] G. Scutari, F. Facchinei, L. Lampariello, and P. Song, “Paral-
lel and distributed methods for nonconvex optimization-part I:
Theory,” arXiv preprint arXiv:1410.4754v2, 2016.

[8] O. Mehanna, K. Huang, B. Gopalakrishnan, A. Konar, and N.
D. Sidiropoulos, “Feasible point pursuit and successive ap-
proximation of non-convex QCQPs”, IEEE Signal Process.
Lett., vol. 22, no. 7, pp. 804-808, July 2015.

[9] S. Tu, R. Boczar, M. Soltanolkotabi, and B. Recht, “Low-rank
solutions of linear matrix equations via procrustes flow,” arXiv
preprint arXiv:1507.03566, 2015.

[10] C. De Sa, K. Olukotun, and C. Re, “Global convergence of
stochastic gradient descent for some non-convex matrix prob-
lems,” arXiv preprint arXiv:1411.1134v3, 2015.

[11] R. Sun, and Z.-Q. Luo, “Guaranteed matrix completion via
nonconvex factorization,” Proc. IEEE FOCS, pp. 270–289,
Oct. 17-20, 2015, Berkley, CA.

[12] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, “Dropping
convexity for faster semi-definite optimization”, arXiv preprint
arXiv:1509.03917, 2015.

[13] Y. Chen, and M. J. Wainwright, “Fast low-rank estimation by
projected gradient descent: General statistical and algorithmic
guarantees”, arXiv preprint arXiv:1509.03025, 2015.

[14] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval
via Wirtinger flow: Theory and algorithms,” IEEE Trans. Inf.
Theory, vol. 61, no. 4, pp. 1985–2007, 2015.

[15] Y. Chen, and E. J. Candes, “Solving random quadratic systems
of equations is nearly as easy as solving linear systems,” Adv.
Neural Info. Process Syst., pp. 739–747, 2015.

[16] J. Sun, Q. Qu, and J. Wright, “A geometric analysis of phase
retrieval,” arXiv preprint arXiv:1602.06664, 2016.

[17] K. Huang, and N. D. Sidiropoulos, “Consensus-ADMM for
general quadratically constrained quadratic programming,”
IEEE Trans. Signal Process., vol. 64, no. 20, pp. 5297–5310,
2016.

[18] S. Boyd, and L. Vandenberghe, “Convex Optimization,” Cam-
bridge, U.K.: Cambridge Univ. Press, 2004.

[19] Y. Nesterov, “Smooth minimization of non-smooth functions,”
Math. Program., vol. 103, no. 1, pp 127-152, May 2005.

[20] R. Johnson, and T. Zhang, “Accelerating stochastic gradient
descent using predictive variance reduction,” Adv. Neural Info.
Process Syst., pp. 315–323, 2013.

[21] L. Xiao, and T. Zhang, “A proximal stochastic gradient method
with progressive variance reduction,” SIAM J. Optim., vol. 24,
no. 4, pp. 2057-2075, 2014.

[22] S. Ghadimi, and G. Lan, “Stochastic first and zeroth-order
methods for nonconvex stochastic programming”, SIAM J. Op-
tim., vol. 23, no. 4, pp. 2341-2368, 2013.

[23] S. Ghadimi, and G. Lan, “Accelerated gradient methods for
nonconvex nonlinear and stochastic programming”, Math.
Prog., vol. 156, no. 1-2, pp. 59-99, 2016.

[24] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic ap-
proximation methods for nonconvex stochastic composite op-
timization”, Math. Prog., vol. 155, no. 1-2, pp. 267-305, 2016.

[25] M. Razaviyayn, M. Sanjabi, and Z.-Q. Luo, “A stochastic suc-
cessive minimization method for nonsmooth nonconvex op-
timization with applications to transceiver design in wireless
communication networks, Math. Prog., vol. 157, no. 2, pp.
515-545, 2016.

[26] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola,
“Stochastic variance reduction for nonconvex optimization,”
arXiv preprint arXiv:1603.06160v2, 2016.

[27] Z.-A. Zhu, and E. Hazan, “Variance reduction for faster non-
convex optimization,” arXiv preprint arXiv:1603.05643, 2016.

[28] S. J. Reddi, S. Sra, B. Poczos, and A. Smola, “Fast stochas-
tic methods for nonsmooth nonconvex optimization,” arXiv
preprint arXiv:1605.06900v1, 2016.

[29] J. Lofberg, “Yalmip: A toolbox for modeling and optimization
in MATLAB,” in Proc. CACSD, Taipei, Sep. 4, 2004.

[30] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for op-
timization over symmetric cones,” Optimization Methods and
Software, vol. 11, no. 1, pp. 625–653, 1999.

4068

