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ABSTRACT

Many problems of recent interest in signal processing, machine
learning and wireless communications can be posed as nonconvex
nonsmooth optimization problems. These problems are generally
difficult to solve especially when the optimization variables are
nonlinearly coupled in some nonconvex constraints. In this pa-
per, we propose an algorithm named “penalty dual decomposition”
(PDD) method, for the minimization of a nonconvex nonsmooth
objective subject to nonconvex constraints. We show that the PDD
converges to KKT solutions under certain constraint qualification
condition. Simulations corroborate the excellent performance of the
PDD method.

1. INTRODUCTION

Many important engineering problems arising from signal process-
ing, wireless communications and machine learning can be modeled
as nonconvex nonsmooth optimization problems. These problem-
s are generally difficult to solve, especially when the optimization
variables are nonlinearly coupled in some nonconvex constraints.
This paper aims to provide a general algorithmic framework, that
can exploit the problem structure as fully as possible, for the mini-
mization of a nonconvex nonsmooth function subject to certain non-
convex coupling constraints.

Nonconvex coupling constraints often arise in contemporary en-
gineering problems [1–4]. For example, in the joint source-relay
design of various multiple-input-multiple-output (MIMO) relay sys-
tems [5–7], the relay power constraint takes a bi-quadratic form,
meaning it is a quaratic constraint in either source or relay pre-
coders; in dictionary learning [8, 9], nonnegative matrix factoriza-
tion [10–12], and geometry-based blind source separation [13], the
data fidelity requirements are often expressed as nonconvex bi-linear
equality constraints. Despite their wide applicability, solving prob-
lems efficiently with nonconvex coupling constraints is very chal-
lenging, because it is difficult to explore their problem structures.

One approach that is often used in the literature to deal with cou-
pling constraints, but often with poor performance, is the alternating
optimization (AO) method. The simple idea behind the AO method
is to replace difficult joint optimization over all variables with a se-
quence of simple optimization problems over a subset of variables.
For instance, the works [14] and [5] applied the AO method to the
joint source-relay design problem, where the source precoder and
the relay precoder are coupled each other in SINR constraints or re-
lay power constraint. However, the AO method can only provide
feasible solutions in the coupling constraint case and cannot guaran-
tee convergence to stationary solutions unless the problem has some
special structure; see for example [15]. In particular, the AO method

gets easily trapped in some unexpected points in the equality cou-
pling constraint case.

Another popular approach that can deal with constraint coupling
is penalty method [16]. The basic idea of penalty methods is to
move the difficult coupling constraints to the objective function as
a penalty term, which prescribes a high cost to infeasible points with
a suitable penalty parameter. For example, in [2], Kuang et. al.
used penalty method to approximate the solution of the symmetric
nonnegative matrix factorization problem. In [6], Shi et. al. used
penalty method to solve the joint source-relay design problem for
full-duplex MIMO relay systems. The work [17] showed that penal-
ty method can be applied to solve certain rank minimization prob-
lem. However, penalty methods could be very inefficient due to the
issue of ill-conditioning for large penalty parameter. Alternative-
ly, Augmented Lagrangian (AL) method [18, 19] was proposed to
overcome the limitations of penalty methods by introducing an ad-
ditional dual-related term. In the AL methods, a sequence of AL
subproblems (i.e., the problems of minimization of the augmented
Lagrangian) needs to be exactly or approximately solved. When the
subproblems are easily solvable, the AL methods are attractive as
they can be easily implemented (often matrix-free) [20] and have
at least local convergence guarantees under relatively mild assump-
tions [21, 22]. However, the AL subproblems are generally hard to
solve especially when they have complicated constraints. Further,
most AL methods cannot deal with problems of nonconvex objective
functions with nonconvex nonsmooth terms, thus limiting its appli-
cation in many contemporary signal processing problems involving
possibly nonconvex nonsmooth regularizers.

This paper proposes an algorithm named penalty dual decom-
position (PDD) method, for the minimization of a nonconvex non-
smooth objective subject to nonconvex constraints. We show that
the PDD has convergence to KKT solutions under certain constraint
qualification. An application to max-min rate fairness multi-cast
beamforming [23] corroborates the excellent performance of the
PDD method. More applications will be reported elsewhere.

Notations: Unless otherwise specified, we use uppercase bold
letters for matrices, lowercase bold letters for column vectors, and
regular letters for scalars. The notation R

n/Cn denotes the n-
dimensional space of real/complex number. For a vector x, ‖x‖
and ‖x‖∞ denotes Euclidean norm and element-wise infinity nor-
m, respectively. For a scalar function f(·), f ′(·)/∇f(·) denote its
derivative/gradient with respect to its argument. For a multivariate
function f(x,y), ∇xf(x,y) denotes its gradient with respect to
x. For vector functions g(x) and h(x,y), ∇g(x) denotes the Ja-
cobian matrix of g(x) and ∇xh(x,y) denotes the Jacobian matrix
of h(x,y) with respect to x. ‘⊗’ denotes Kronecker product. ei

denotes a vector of all zeros except the i-th entry being 1.
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2. PROBLEM SETUP AND KKT CHARACTERIZATION

Consider the following problem

(P ) min
x∈X ,y

f(x,y) +

m∑
j=1

φ̃(yj)

s.t. h(x,y) = 0,
gi(xi) ≤ 0, i = 1, · · · , N

(1)

where the optimization variables are given by x = (x1,x2, . . . ,xn)
with xi ∈ Xi ⊆ R

ni and
∑n

i=1 ni = N ; y = (y1,y2, . . . ,ym) ∈
R

M and yj ∈ R
mj , j = 1, 2, . . . ,m, with

∑m
j=1 mj = M ;

φ̃(yj) is a composite function in the form of φj(sj(yj)); the fea-
sible set X is the Cartesian product of n simple closed convex sets:
X � Πn

i=1Xi with Xi ⊆ R
ni and

∑n
i=1 ni = N ; f(x,y) is a

scalar continuously differentiable function; for each j, sj(yj) is
a convex but possibly nondifferentiable function while φj(x) is a
nondecreasing and continuously differentiable function; for each i,
gi(xi) ∈ R

qi is a vector of qi continuously differentiable functions

with q �
∑n

i=1 qi; h(x,y) ∈ R
p is a vector of p continuously

differentiable functions. We assume that the feasible set of prob-
lem (P ) is nonempty and the objective function is regular [24]
throughout the rest of this paper.

The term φ̃(yj) could take the form of sparsity promoting
function such as the �1 penalty function, the SCAD penalty or the
logarithm function; see [25, TABLE I] for details. Since the term∑ny

j=1 φ̃(yj) could be neither convex nor differentiable, we use
generalized gradient/direcgtional derivative [26] to characterize the
first-order optimality condition. The following result characterizes
the first-order optimality condition of problem (P ), under certain
constraint qualification called the Robinson’s condition [27, Chapter
3]. The proof is omitted for brevity.

Theorem 2.1 Let (x̂, ŷ) be a local minimum of problem (P ). As-
sume that Robinson’s condition holds for problem (P ) at (x̂, ŷ).
Then there exist multipliers μ̂ ∈ R

p and ν̂i ∈ R
qj , j = 1, 2, . . . , q

that together with (x̂, ŷ) satisfy the following KKT system(
∇xif(x̂, ŷ) +∇xih(x̂, ŷ)

T μ̂+∇xigi(x̂i)
T ν̂i

)T

× (xi − x̂i) ≥ 0, ∀xi ∈ Xi, (2a)

0 ∈ ∂̄φ̃(yj)+∇yjf(x̂, ŷ)+∇yjh(x̂, ŷ)
T μ̂, ∀j, (2b)

(ν̂i)
Tgi(x̂i) = 0, gi(x̂i) ≤ 0, ν̂i ≥ 0,h(x̂, ŷ) = 0. (2c)

where ∂̄φ̃(yj) denotes the set of generalized gradients [26] of ∂̄φ̃(·)
at yj .

Remark 2.1 The Robinson’s condition assumed here is a kind of
constraint qualification (CQ) condition. Although it is generally
hard to check as many CQ conditions, such an condition is stan-
dard in constrained optimization literature, e.g., [17, 27–29]. More-
over, it is related to commonly used CQs, such as Mangasarian-
Fromovitz constraint qualification (MFCQ) condition, linear inde-
pendence constraint qualification (LICQ) condition, Slater’s condi-
tion, etc. See details in [24].

3. PDD METHOD FOR PROBLEM (P )

In addition to the nonconvexity and nondifferentiability, the con-
straint coupling due to h(x,y) = 0 further complicates problem
(P ). If no such constraints exist, the classical BCD-type algorithm-
s can be applied to decompose problem (P ) into a sequence of
small-scale problems. This observation motivates us to develop a
primal-dual based framework, which dualize the difficult coupling
constraint by appropriate penalty function, and use coordinate-
decomposition to perform fast computation, hence the name penalty

Table 1. Algorithm 1: PDD method for problem (P )

0. initialize z0, �0>0, λ0, and set 0 < c < 1, k = 1
1. repeat
2. zk = BSUM(P�k,λk

, L̃k, z
k−1, εk)

3. if ‖h(zk)‖ ≤ ηk // case 1—AL method

4. λk+1 = λk + 1
�k

h(zk)

5. �k+1 = �k

6. else // case 2—penalty method

7. λk+1 = λk

8. �k+1 = c�k

9. end
10. k = k + 1

11. until some termination criterion is met

dual decomposition method. In what follows, we present the basic
PDD method and its convergence result.

3.1. PDD Method

The basic PDD method is a double-loop algorithm where the inner
loop is to approximately solve an augmented Lagrangian (AL) sub-
problem while the outer loop is to update the dual variable or the
penalty parameter in terms of the constraint violation [30]. Specifi-
cally, we update the dual variable λk using dual ascend method [31]
when the constraint violation is small (i.e., Step 4); otherwise de-
crease the penalty parameter �k (i.e., Step 8). Moreover, to ex-
ploit the problem structure as fully as possible, we use the BSUM
algorithm [32], which is a generalized version of block coordinate
descent (BCD) method [16], to solve the AL subproblem. In the B-
SUM algorithm, each time one block variable is selected to be updat-
ed while fixing the others by minimizing a locally tight upper bound
of the AL. Thus the PDD method perform adaptive switching be-
tween the AL method and penalty method. This adaptive strategy is
expected to find an appropriately large penalty, with which, the AL
method could eventually converge. The detailed steps of the PDD
method are presented in TABLE I, where the parameter ηk measures
the constraint violation and the parameter εk controls the solution ac-
curacy of the BSUM algorithm, with both parameters going to zero
as the number of outer iterations k increases.

The main effort of the PDD lies in Step 2. The operator
‘BSUM(P�k,λk , L̃k, z

k−1, εk)’ means that, starting from zk−1,
the BSUM algorithm [32] or its variant shown in [24] is invoked to
iteratively solve the problem (P�k,λk ), given below

(P�k,λk ) min
xi∈X̃i,y

{
Lk(x,y) � f(x,y) +

ny∑
j=1

φj(s(yj))

+ λT
k h(x,y) +

1

2�k
‖h(x,y)‖2

}
(3)

where X̃i = {xi ∈ Xi | gi(xi) ≤ 0} and Lk(x,y) is the augment-
ed Lagrange function with dual variable λk and penalty parameter
�k. Further, the BSUM algorithm utilizes a locally tight upper bound
of Lk(x,y), denoted as L̃k, and it terminates when certain solution
accuracy εk is reached.

In the following, we address the convergence issue of the PDD
method. To do so, we define ek and ���k

j in (4) and (5) (see the top

of the next page), where g(x) � (gi(xi))i. It is readily known that,
when these two terms go to zero, the first order optimality condition
with respect to x and y (i.e., (2a) and (2b)) holds true. The main
convergence result is presented in Theorem 3.1. See [24] for the
detailed proof.

4060



ek = PX {xk −∇xLk(x
k,yk)−∇g(xk)T νk} − xk, (4)

���k
j = yk

j − argmin
yj

⎧⎨
⎩

φ′
j(sj(y

k
j ))sj(yj) +

1
2
||yj − yk

j ||2

+
(
∇yj f(x

k,yk) +∇yjh(x
k,yk)T

(
1
�k

h(xk,yk) + λk
))T

(yj − yk
j )

⎫⎬
⎭ (5)

Theorem 3.1 Let {xk,yk,νk} be the sequence generated by Al-
gorithm 1 for problem (P ), where νk=(νk

i )i denotes the Lagrange
multipliers associated with the constraints gi(xi)≤0, ∀i. The stop
criterion for the BSUM algorithm involved in Algorithm 1 is

max

(
‖ek‖∞, ‖ ���k ‖∞

)
≤ εk, ∀k (6)

with εk, ηk → 0 as k → ∞. Suppose that (x∗,y∗) is a limit
point of the sequence {xk,yk} and Robinson’s condition holds for
problem (P ) at (x∗,y∗). Then (x∗,y∗) is a KKT point of problem
(P ), i.e., it satisfies the KKT system (2) of problem (P ).

Remark 3.1 A way to set ηk is to make it explicitly related to the
constraint violation of the last iteration or the current minimum con-
straint violation. For example, we set ηk = 0.9‖h(zk−1)‖∞ in our
simulations later. Moreover, for practical implementation, it is more
reasonable to terminate the BSUM algorithm based on the progress
of the objective value Lk(z

r), i.e., |Lk(zr)−Lk(zr−1)|
|Lk(zr−1)| ≤ εk. Here,

zr denotes the BSUM iterations. In addition, since the penalty term
‖h(x)‖∞ vanishes eventually, a practical choice of the termination
condition for the PDD method is ‖h(zk)‖∞ ≤ εO . Here, εO is
some prescribed small constant.

4. APPLICATION: MAX-MIN RATE FAIRNESS
MULTI-CAST BEAMFORMING

4.1. Problem Statement

We here illustrate an important example of (P1) in wireless
communications—the multi-group multi-cast beamfroming prob-
lem [23]. Consider a single-cell multi-user multiple-input-multiple-
output (MIMO) downlink system, where a base station (BS) e-
quipped with Nt antennas wants to transmit ng > 1 independent
data streams to ng group of users over a common frequency band.
Suppose that the i-th group, denoted by Gi, has mi single-antenna
users, each of which is interested in receiving a common data stream.
Let si denote the data stream for group Gi, i = 1, 2, . . . , ng and
wi ∈ C

Nt be the beamforming weight for the i-th group. The trans-
mitted signal at the BS is given by

∑ng

i=1 wisi(t). Let hk ∈ C
Nt

denote the channel vector between the BS and the receiver k ∈ Gi.
The received signal at the receiver k ∈ Gi is given by

rk = hH
k wisi +

∑
j �=i

hH
k wjsj + zk, k ∈ Gi (7)

where zk denotes additional Gaussian white noise (AWGN) with
variance σ2

k.
Assume that si’s are i.i.d Gaussian random variable with zero

mean and unit variance, and si’s and zk’s are independent of each
other. Then the signal-to-interference-plus-noise-ratio (SINR) can
be expressed as

SINRk =
wH

i Rkwi∑
j �=i w

H
j Rkwj + σ2

k

, k ∈ Gi, i = 1, 2, . . . , ng (8)

where Rk � hkh
H
k or equals to the covariance matrix of hk.

To achieve rate fairness among users, a popular criterion for
beamforming design is to maximize the minimum user rate subject
to the BS power constraint

∑n
i=1 ‖wi‖2 ≤ PBS , where PBS de-

notes the total available power at the BS. Since the power constraint

must be active at the optimality, we can write the max-min rate fair-
ness multi-cast beamforming problem equivalently as

max
{wi}

min
i

min
k∈Gi

log2

(
1 +

wHAikw

wHBikw

)
, s.t. ‖w‖2 = 1 (9)

where w = (wi)i, Aik = diag{ei} ⊗Rk, and

Bik = (I− diag{ei})⊗Rk +
σ2
k

PBS
I.

This problem is NP-hard [23]. A popular method to address this
problem is using semidefinite relaxation method coupled with bisec-
tion method [23], referred to as BisecSDR method, where, in each
bisection, it is required to solve a semidefinite programming, requir-
ing complexity at most O

(
B log( 1

ε
)
√

ngNt(n
3
gN

6
t + ngN

2
t K

)
where K �

∑ng

i=1 mi, the parameter ε represents the solution accu-
racy at the interior-point algorithm’s termination, and B denotes the
number of bisections.

4.2. PDD-based Algorithm

For convenience, let us consider a more general equivalent formula-
tion of problem (9), which is given by

(P1) max
w

min
k∈K

wHAkw

wHBkw
, s.t. ‖w‖2 = 1 (10)

where K � {1, 2, . . . ,K}, and the matrices Ak’s are all positive
semidefinite and Bk’s are all positive definite. It is worth mention-
ing that, besides the multi-cast beamforming, many other engineer-
ing problems can be formulated as (P1) [33]. In what follows, we
present the PDD-based algorithm for problem (P1).

First, we can recast problem (P1) as follows

max
t≥0,w

min
k

tk

s.t. ‖A
1
2
k w‖ = tk‖B

1
2
k w‖, ∀k,

‖w‖2 = 1,

(11)

which is a special case of problem (P ) satisfying LICQ condition. In
problem (11), the first K equality constraints are difficult coupling
constraints. By moving these constraints into the objective, we ob-
tain the corresponding augmented Lagrangian problem as follows

max
t≥0,w

min
k

tk − 1

2ρ

K∑
k=1

(
‖A

1
2
k w‖ − tk‖B

1
2
k w‖+ ρλk

)2

s.t. ‖w‖2 = 1. (12)

where ρ is a penalty parameter and λk is a Lagrange multiplier asso-
ciated with the k-th constraint.

The key to using the PDD method is to find appropriate local-
ly tight upper bounds for the objective function, so that BSUM can
be applied to optimize the AL. For problem (12), we can simply
decouple the variables into two blocks w and t, leading to two sub-
problems: i.e., solve (12) for t while fixing w, and solve (12) for
w while fixing t, which are respectively referred to as t-subproblem
and w-subproblem. The t-subproblem is strictly convex and thus
has a unique solution. By applying KKT analysis, we can obtain a
closed-form solution to the t-subproblem. The main difficulty lies
in solving the w-subproblem given by

min
w

ϑ(w) �
K∑

k=1

(
‖A

1
2
k w‖−tk‖B

1
2
k w‖+ρλk

)2

s.t. ‖w‖2 = 1.
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Apparently, the w-subproblem is difficult to solve. Instead of ex-
actly minimizing ϑ(w), we try to find a locally tight upper bound
u(w; w̃) for ϑ(w) and minimize this upper bound to update w giv-
en t. Observing the constraint ‖w‖ = 1, we expect the upper bound
to be a homogeneous quadratic function in the form of wHCw or
wT

eqCweq where weq � (�e {w} ,m {w}), so that the resulting
problem is an easily solvable eigenvalue problem.

By expanding ϑ(w), we can find that ϑ(w) includes the
following four kinds of terms: 1) wHAkw + t2kw

HBkw; 2)
−2tk‖A

1
2
k w‖‖B

1
2
k w‖; 3) 2ρλk‖A

1
2
k w‖; 4)−2ρλktk‖B

1
2
k w‖.

Clearly, we need to make efforts to bound the last three terms
with homogenous quadratic functions. Unfortunately, since the
multiplier λk’s could be either negative or positive, it is chal-
lenging to bound the last two terms with homogenous quadratic
functions. Thanks to the fact that ‖w‖ = 1, we can modify the

third term as 2ρλk‖A
1
2
k w‖ ‖w‖ when λk < 0 and the fourth ter-

m as −2ρλktk‖B
1
2
k w‖ ‖w‖ when λk > 0. Hence, essentially,

ϑ(w) includes two kinds of terms in the forms of ‖Q1w‖ and
−‖Q1w‖ ‖Q2w‖ with some appropriate Q1 and Q2. To bound
these two terms, we resort to the following lemma.

Lemma 4.1 For real vectors x, y, x̃, ỹ, the following inequalities

1) ‖x‖ ‖y‖ ≥ 1
‖x̃‖‖ỹ‖x

T x̃ỹTy, ∀ x̃ �= 0, ỹ �= 0,x,y;

2) ‖x‖ ≤ 1
2‖x̃‖ ‖x‖2 + 1

2
‖x̃‖ , ∀ x̃ �= 0,x

hold true with equality satisfied at x = x̃ and y = ỹ.

Proof: Part 1) follows directly from the Cauchy-Schwartz inequal-
ity, while Part 2) follows from the property of concave function by

noting that ‖x‖ =
√

‖x‖2 is a concave function of ‖x‖2. �
In terms of the above analysis and using Lemma 4.1, we

can obtain ϑ(w) ≤ u(w, w̃) � wT
eqCweq in the real domain.

Moreover, it can be verified that u(w, w̃) is a locally tight upper
bound [32] of ϑ(w) over the set {w| ‖w‖=1}. Due to space
limitation, we omit the detailed form of C which is a 2ngNt by
2ngNt matrix function of w and w̃. With such an upper bound
function, we update w by solving an eigenvalue problem, i.e.,
minweq w

T
eqCweq, s.t. ‖weq‖ = 1. Denote by vmin(C) the

eigenvector of C corresponding to its minimum eigenvalue. Once
we get vmin(C), we can construct the corresponding w. It can be
shown that the most costly step of the BSUM algorithm lies in calcu-
lating vmin(C), requiring complexity of O(Kn2

gN
2
t ) +O(n3

gN
3
t ),

where the first term corresponds to the computation of C while
the second term corresponds to the eigenvalue decomposition. It
is easily seen that the PDD method has lower complexity than the
BisecSDR method in [23].

4.3. Numerical Results

In the simulations, the noise power is set to unit for all receivers
and PBS = 10 dB. For convenience, we denote by (Nt, ng,mg) a
multi-user multi-cast network with Nt BS antennas, ng multi-cast
groups each with mg single-antenna users, hence K = ngmg users
in total. Furthermore, we set ρ0 = K, c = 0.6, εO = 1e−3, as well
as εk = εk−1c with ε0 = 1e−3 for the PDD method. Moreover, we
compare the PDD method with the BisecSDR method1 in [23] and

1Since the semidefinite relaxation method cannot guarantee a rank-one
solution, the work [33] proposed using Gaussian randomization procedure
(GRP) to recover a good rank-one solution in the end of bisection method.
Note that the BisecSDR method here includes no GRP. Hence, it serves as an
upper bound performance in the comparison.

the penalty-BSUM method2 proposed in [6] (abbreviated as ’Penal-
ty’ in the plot). The penalty-BSUM shares the same parameter set-
ting with the PDD and the BisecSDR is terminated when the relative
size of the bisection interval is smaller than 1e−3.

Two examples of convergence behavior are illustrated in Fig. 1,
where the final result of the BisecSDR method is presented. It is
seen that the PDD method exhibits better convergence behavior than
the penalty-BSUM method in terms of both the objective value and
the optimality gap, while both achieving similar constraint violation.
Here the optimality gap measures how well the solution satisfies the
KKT condition of problem (9) or (P1). Moreover, the PDD can
achieve the upper bound value provided by the BisecSDR in these
two examples, implying the excellent performance of the PDD.
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Fig. 1. Convergence behavior of the PDD method.

Table 2 compares the performance of three methods in terms
of the CPU time and the achieved minimum rate averaged over
100 random channel realizations. In the table, RPDD , RSDR, and
RPenalty denote the minimum rate achieved by the PDD method,
the BisecSDR method, and the penalty-BSUM method, respectively,
while TPDD , TSDR, and TPenalty denote the corresponding cpu
time required by each method. It can be observed that the PDD
method requires much less cpu time than the BisecSDR method
while achieving almost global optimality. Moreover, it performs
more efficient than the penalty-BSUM method.

Table 2. The Average CPU Time And Min. Rate Comparison

Network RPDD
RSDR

TSDR
TPDD

RPDD
RPenalty

TPenalty

TPDD

(2, 2, 2) 99.79% 21.56 100.20% 1.95

(4, 2, 2) 99.93% 28.47 100.00% 2.43

(8, 4, 2) 99.89% 10.27 100.00% 1.96

5. CONCLUSION

We have provided an optimization framework for a class of nons-
mooth nonconvex optimization problems. Its convergence to KKT
points has been established under Robinson’s condition. Resorting
to the BSUM-type algorithm, our framework can make use of the
problem structure as fully as possible, thus it scales well to the prob-
lem size. It can be used to address many difficult problems arising
from signal processing.

2The penalty-BSUM algorithm is similar to the PDD method but does not
include the dual update as in the PDD method. The algorithm in [33] is in
essence the penalty-BSUM algorithm, with the only difference in that some
fixed penalty parameter was used in [33] while the penalty-BSUM algorithm
uses increasing penalty. However, fixed penalty parameter cannot guarantee
a KKT solution. Moreover, it is generally difficult to choose a penalty param-
eter which works well for all cases. Hence, we modify the algorithm in [33]
to the exact penalty-BSUM algorithm by using increasing penalty.
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[20] M. Kočvara and M. Stingl, PENNON: A generalized augmented La-
grangian method for semidefinite programming, pp. 303–321, Springer
US, Boston, MA, 2003.

[21] A. F. Izmailov and M. V. Solodov, “On attraction of linearly constrained
lagrangian methods and of stabilized and quasi-newton sqp methods to
critical multipliers,” Mathematical Programming, vol. 126, no. 2, pp.
231–257, 2011.

[22] D. Fernndez and M. V. Solodov, “Local convergence of exact and in-
exact augmented lagrangian methods under the second-order sufficient
optimality condition,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 384–407, 2012.

[23] E. Karipidis, N. D. Sidiropoulos, and Z. Q. Luo, “Quality of service
and max-min fair transmit beamforming to multiple cochannel multi-
cast groups,” IEEE Transactions on Signal Processing, vol. 56, no. 3,
pp. 1268–1279, March 2008.

[24] Q. Shi and M. Hong, “Penalty dual decomposition method for noncon-
vex nonsmooth optimization–Part I: Theory,” Technical Report, avail-
able at arXiv.org, 2016.

[25] G. Gasso, A. Rakotomamonjy, and S. Canu, “Recovering sparse signals
with a certain family of nonconvex penalties and dc programming,”
IEEE Transactions on Signal Processing, vol. 57, no. 12, pp. 4686–
4698, Dec 2009.

[26] E. J. Balder, “On generalized gradients and optimization,”
http://www.staff.science.uu.nl/ balde101/cao10/cursus08 3.pdf, Sept.
2008.

[27] A. Ruszczynski, Nonlinear optimization, Princeton University Press,
2011.

[28] Z. Lu and Y. Zhang, “Sparse approximation via penalty decomposition
methods,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2448–
2478, 2013.

[29] A. F. Izmailov and M. V. Solodov, “Optimality conditions for irreg-
ular inequality-constrained problems,” SIAM Journal on Control and
Optimization, vol. 40, no. 4, pp. 1280–1295, 2002.

[30] M. P. Friedlander and M. A. Saunders, “A globally convergent linearly
constrained lagrangian method for nonlinear optimization,” SIAM J. on
Optimization, vol. 15, no. 3, pp. 863–897, 2005.

[31] D.P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, A-
thena Scientific, Belmont, MA, 1996.

[32] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth op-
timization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

[33] M. Soltanalian, A. Gharanjik, M. R. B. Shankar, and B. Ottersten,
“Grab-n-pull: An optimization framework for fairness-achieving net-
works,” in 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2016, pp. 3301–3305.

4063


