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ABSTRACT

Finding a common point of multiple closed sets in a real Hilbert

space has been an important task in a wide range of signal process-

ing. In this paper, we study asymptotic properties of the parallel

projection method (PPM) for closed sets satisfying a special feasi-

bility condition, which holds in the context of certain sparse signal

processing. Our analysis guarantees that the cluster point set of PPM

is exactly the intersection of the closed sets, and the distance to each

set along a sequence generated by PPM with arbitrary initial point

converges to zero. Moreover, under certain additional assumptions,

we prove that the sequence converges to a point in the intersection

of the closed sets, while existing analyses gave only local behaviors

of PPM.

Index Terms— Nonconvex feasibility problem, parallel projec-

tion method, convergence analysis

1. INTRODUCTION

Finding a common point of multiple closed sets in a real Hilbert

space is an important task in wide range of signal and image pro-

cessing [1, 2, 3]. Let H be a finite dimensional real Hilbert space and

Si (⊂ H) (i = 1, 2, . . . , p) closed sets satisfying
⋂p

i=1 Si 6= ∅.

Then, the standard feasibility problem is formulated as

Find some point x∗ ∈

p
⋂

i=1

Si, (1)

where each Si (i = 1, 2, . . . , p) is associated with a certain desired

property of a vector x to be estimated. One of the most success-

ful iterative approaches is known as the parallel projection method

(PPM) that updates a point x(k) ∈ H by using a weighted average

of selections y
(k)
i (i = 1, 2, . . . , p) in the metric projections PSi of

x(k) onto every Si, i.e.,

y
(k)
i ∈ PSi(x

(k)) := argmin
y∈Si

‖y − x(k)‖ ⊂ H, (2)

where PSi(x
(k)) 6= ∅ is assumed (Note: this condition holds auto-

matically by Weierstrass’s theorem if dimension of H is finite, i.e.,

dim(H) < ∞). For a special case where all Sis are hyperplanes,

Cimmino showed that a sequence generated by the PPM converges

to the best approximation, from x(0), to the intersection, i.e., the pro-

jection of x(0) onto the intersection in this special case [4] (see also

Cimmino’s history [5]). If all Sis are closed affine subspaces (or

linear variety), this best approximation property of the PPM holds

This work was supported in part by JSPS Grants-in-Aid (26730128).

PPM:Parallel projection method

The initial point x(0) ∈ H,

convex weights (wi)
p
i=1 s.t. wi > 0 and

∑p

i=1 wi = 1,

and closed sets S1, S2, . . . , Sp ⊂ H are given.

Repeat

Step 1. Select y
(k)
i ∈ PSi(x

(k)) (i = 1, 2, . . . , p).

Step 2. Compute x(k+1) =
∑p

i=1 wiy
(k)
i .

until x(k) converges.

also true. More generally, if all Sis are assumed to be closed convex

sets, convergence of the PPM to a point in the intersection has been

guaranteed, see, e.g., [6, 7, 8, 9, 10, 11].

Meanwhile, there are many examples of nonconvex sets associ-

ated with useful properties in the recent advance of sparsity-aware

signal processing, e.g., the lower level set of ℓ0 pseudo norm func-

tion (see Example 5) and the lower level set of rank function of ma-

trices (see Example 6) (see e.g. [12, 13] for applications of the ℓ0
pseudo norm and rank function). Sparsity implies that few compo-

nents of signal are nonzero. The ℓ0 pseudo norm of a vector is the

number of nonzero components of the vector. The rank of a ma-

trix plays also important roles in sparsity-aware signal processing

because it is the number of nonzero singular values of the matrix.

Unfortunately, if at least one of S1, S2, . . . , Sp is not convex,

convergence analysis of the PPM regardless of the initial point has

not been established so far. Although nonconvex projection methods

to solve (1) has been investigated and guaranteed their local conver-

gences [14, 15, 16, 17, 18, 19], their analyses require impractical

initial points. Certain global properties of a nonconvex projection

method were investigated in the case where specific nonconvex sets

in [20]. However, it does not establish convergence of the sequence

generated by the method. Consequently, establishing convergence

analysis regardless of initial point of the PPM is required from the

perspective of the signal processing application of the PPM.

In this paper, to establish global convergence of PPM to cer-

tain nonconvex feasibility problems, e.g., in sparsity-aware signal

processing, we study asymptotic properties of PPM for closed sets

S1, S2, . . . , Sp satisfying the following special feasibility condition

p
⋂

i=1

Inc(Si) 6= ∅, (3)

where Inc(S) is defined for a nonempty closed set S ⊂ H by

Inc(S) :=
⋂

x∈H

y∈PS(x)

{

z ∈ S | 〈x− y, z − y〉 ≤ 0
}

. (4)
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The closed convexity of Inc(S) is guaranteed because it is the inter-

section of closed half spaces. Fortunately, we can verify easily that

Inc(S) is nonempty for important closed sets appearing sparsity-

aware signal processing (see Sect. 4 and Sect. 5).

Thanks to the special feasibility condition (3), we present two

global asymptotic properties of PPM:

1. the distance to each Si (i = 1, 2, . . . , p) converges to zero

(Theorem 1),

2. PPM under the condition (3) never falls into any trap out-

side the intersection
⋂p

i=1 Si because the set of all possible

cluster points of PPM1, say CPPM, is exactly the intersection
⋂p

i=1 Si (Theorem 2), where z∗ ∈ H is called a cluster point

of PPM if

(∃(x(k))∞k=0 ⊂ H by PPM)(∃ι : N → N : strictly increasing)

lim
k→∞

x(ι(k)) = z∗.

Theorem 1 and Theorem 2 guarantee that the sequence generated by

PPM has a point belonging to the region where we can utilize tech-

niques in local convergence analysis. Therefore, we can prove that

the sequence generated by PPM, converges to a point in
⋂p

i=1 Si, un-

der certain additional assumptions to guarantee local convergences

(Theorem 3 and Theorem 4). Consequently, we succeed in establish-

ing global convergence of the sequence generated by PPM under the

special feasibility condition (3) as well as additional assumptions to

guarantee local convergences. All the proofs of Theorems 1–4 are

omitted due to space limitation. Finally, we conduct a numerical

example to investigate numerically convergence behavior of PPM,

which demonstrates that the sequence generated by PPM converges

to a solution of problem (1) rapidly.

2. PRELIMINARIES

Let N and R be the sets of all nonnegative integers and all real num-

bers, respectively, and let H a finite dimensional real Hilbert space

equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. De-

note by 2H the collection of all subsets of H.

Let T : H → 2H be a set-valued mapping. If T maps x ∈ H to

a singleton {y} ∈ 2H, we write y = T (x). For a nonempty closed

set S ⊂ H, the metric projection PS onto S satisfies that x = PS(x)
for any x ∈ S.

3. ASYMPTOTIC PROPERTIES OF PPM

3.1. Basic Convergences

We present the following two theorems as part of our main results.

Theorem 1 (Distance to each set). Suppose that Si (i = 1, 2, . . . , p)

in (1) satisfies the condition (3). Let (x(k))∞k=0 be a sequence gen-

1In this paper, the notion of the cluster points is defined for PPM, though

it is in general for a sequence: for a sequence (x(k))∞
k=0 ⊂ H, the set of

cluster points is defined by

C((x(k))∞k=1) := {x ∈ H | ∃ι : N → N : strictly increasing,

s.t. x(ι(k))→ x (k → ∞)}.

erated by PPM. Then we have

‖x(k+1) − z‖2 ≤‖x(k) − z‖2−

p
∑

i=1

wi‖x
(k) − y

(k)
i ‖2

for all z ∈

p
⋂

i=1

Inc(Si) and for all k ∈ N, (5)

and

lim
k→∞

‖x(k) − PSi(x
(k))‖ = 0 (i = 1, 2, . . . , p). (6)

Theorem 2 (Set of all possible cluster points). Suppose that Si (i =
1, 2, . . . , p) in (1) satisfies the condition (3). Then,

CPPM =

p
⋂

i=1

Si. (7)

3.2. Global Convergence

Theorem 3 and Theorem 4 below show that additional conditions

for S1, S2, . . . , Sp guarantee the global convergence of sequences

generated by PPM, though Theorem 1 and Theorem 2 do not.

Theorem 3 (Finite union of closed convex sets). Suppose that

Si (i = 1, 2, . . . , p) in (1) satisfies the condition (3). In addition,

we assume that each Si can be expressed as a finite union of closed

convex sets (Ci,l)
q

l=1, i.e., Si =
⋃q

l=1 Ci,l. Let (x(k))∞k=0 be a

sequence generated by PPM with initial x(0) ∈ H. Then (x(k))∞k=0

converges to a point in
⋂p

i=1 Si.

Theorem 4 (Closed semi-algebraic sets). Let H = R
n. Suppose

that Si (i = 1, 2, . . . , p) in (1) satisfies the condition (3). In addi-

tion, we assume that each Si is semi-algebraic.2 Let (x(k))∞k=0 be a

sequence generated by PPM with initial x(0) ∈ H. Then (x(k))∞k=0

converges to a point in
⋂p

i=1 Si.

Remark 1: (Idea behind proofs of Theorems 3 and 4) Thanks to

the special feasibility condition (3), Theorem 1 and Theorem 2 hold

true, which implies that any sequence generated by PPM becomes

bounded and has a cluster point belonging to
⋂p

i=1 Si. In other

words, the sequence must have a point sufficiently close to
⋂p

i=1 Si.

Consequently, convergence of the sequence can be proven by exploit-

ing techniques in local convergence analysis of projection methods

established in existing works, e.g., [29, Theorem 3.4] and [19, The-

orem 1 and Theorem 3].

(Another condition for convergence of sequences) Although the fol-

lowing condition also guarantees convergence of the sequence gen-

erated by PPM, it is not verified easily in general: if Si (i =
1, 2, . . . , p) in (1) satisfies

int

(

p
⋂

i=1

Inc(Si)

)

6= ∅,

any sequence generated by PPM converges to a point in
⋂p

i=1 Si.

2For any set S ⊂ H = Rn, S is called semi-algebraic [21] if there exists
a finite number of real polynomial Pij , Qij : H → R such that

S =
⋃

i∈I

⋂

j∈J

{x ∈ H | Pij(x) = 0, Qij(x) < 0}.

Semi-algebraic nature (or more generally, definable in the o-minimal struc-

ture [22, 23]) is exploited to show local convergences of iterative methods
including projection methods [18, 19, 24, 25] (see also [26, 27, 28]).
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4. ON THE SPECIAL FEASIBILITY CONDITION

We investigate examples of a closed set S such that Inc(S) 6= ∅.

Examples 1–3 reveal relatively general properties of Inc(S).

Example 1 (Closed convex set). Let C ⊂ H be a nonempty closed

convex set. Then, Inc(C) = C. This is because the projection onto

a nonempty closed convex set C can be characterized by

y = PC(x) ⇔ (∀z ∈ C) 〈x− y, z − y〉 ≤ 0 (8)

for any x, y ∈ H.

Example 2 (Finite union of closed sets Sis). Let Si ⊂ H (i =
1, 2, . . . , q) be closed sets such that

⋂q

i=1 Inc(Si) 6= ∅. Then, the

set
⋃q

i=1 Si is closed, and

Inc

(

q
⋃

i=1

Si

)

⊃

q
⋂

i=1

Inc(Si) 6= ∅.

Example 3 (Nonconvex closed cone). Let a nonempty closed set

S ⊂ H be a cone, i.e.,

x ∈ S ⇒ (∀α ∈ [0,∞)) αx ∈ S.

Then, 0 ∈ Inc(S).

Consequently, Theorems 1–4 are possibly applicable in the case

where each Si(i = 1, 2, . . . , p) is a closed convex set or a noncon-

vex closed cone.

Remark 2: From comparison between (4) and (8), Inc(S) 6= ∅

offers a convex-like inequality for a some point in S, which results

in certain global properties of PPM, i.e., Theorem 1 and Theorem 2.

Example 3 shows that the condition Inc(S) 6= ∅ is not stringent.

Meanwhile, Examples 4–6 below exemplify useful instances

playing important roles in signal processing.

Example 4 (Nonnegativity constraint). Let H = R
n equipped with

the standard inner product 〈·, ·〉 and its induced norm ‖ · ‖. The

nonnegativity constraint is defined by

R
n
+ :={x = (x1, . . . , xn) ∈ H|xi ≥ 0 (∀i = 1, . . . , n)}. (9)

It is a closed semi-algebraic convex cone, and R
n
+ = Inc(Rn

+).
The projection PRn

+
onto R

n
+ can be computed efficiently: x⋆ =

PRn
+
(x) if and only if x⋆ is obtained by replacing all the negative

entries of x by zero.

Example 5 (Lower level set of ℓ0 pseudo norm). Let H = R
n

equipped with the standard inner product 〈·, ·〉 and its induced norm

‖ · ‖. The ℓ0 pseudo norm ‖ · ‖ℓ0 of x ∈ R
n is defined as the number

of nonzero components in x. The lower level set of the ℓ0 pseudo

norm is defined by

Xn
ℓ0≤a = {x ∈ R

n | ‖x‖ℓ0 ≤ a} (a ∈ N). (10)

Then, Xn
ℓ0≤a is a closed semi-algebraic cone3, and 0 ∈ Inc(Xn

ℓ0≤a).
The projection PXn

ℓ0≤a
onto Xn

ℓ0≤a can be computed efficiently:

for any x ∈ R
n, x⋆ ∈ PXn

ℓ0≤a
(x) if and only if x⋆ is obtained by

replacing the smallest (in the sense of absolute value) (n−a) entries

of x by zero.

Example 6 (Lower level set of rank function of matrices). Let H
be R

m×n equipped with the standard inner product 〈·, ·〉 and its

induced Frobenius norm ‖ · ‖F . The lower level set of rank function

Xm×n
r := {X ∈ R

m×n | rank(X) ≤ r} (r ∈ N) (12)

is a closed semi-algebraic cone4, and hence 0 ∈ Inc(Xm×n
r ).

The projection P
Xm×n

r
onto Xm×n

r can be computed efficiently:

Let X ∈ R
m×n and r ≤ rank(X). Then X⋆

r ∈ P
Xm×n

r
(X) if and

only if X⋆
r is of the following form:

X⋆
r = UΣrV

⊤,

where X = UΣV ⊤ is a singular value decomposition5 of X , and

Σr ∈ R
m×n is the diagonal matrix obtained from Σ by replacing its

(n− r) smallest diagonal elements by zeros.

5. APPLICATION OF THEOREM 4

We give two corollaries of Theorem 4. Since the collection

{Rm×n
+ ,Xm×n

ℓ0≤a , X
m×n
r } (see Examples 4–6) satisfies the require-

ments6 in Theorem 4, we can guarantee the global convergence of

PPM applied to nonconvex feasibility problems in terms of Rm×n
+ ,

Xm×n
ℓ0≤a , and Xm×n

r . This gives us powerful iterative algorithms for

signal processing problems.

Let us consider a sparse and low-rank matrix approximation

problem. For a given matrix X0 ∈ R
m×n, a task to find a sparse

and low-rank matrix which approximates X0 well has several appli-

cation targets including covariance matrix estimation (see e.g. [32]).

For this task, a natural problem formulation is

find X ∈ Xm×n
ℓ0≤a ∩ Xm×n

r . (14)

Theorem 4 guarantees that PPM applied to (14) converges to a solu-

tion.

Corollary 1. PPM applied to problem (14) with arbitrarily chosen

inital X(0) generates a convergent sequence (X(k))∞k=0 to a point

in Xm×n
ℓ0≤a ∩ Xm×n

r .

Note that the limit point of the sequence generated by PPM is empir-

ically close to the initial point X(0). Hence PPM with initial X0 is

expected to be a powerful heuristic algorithm to sparse and low-rank

matrix approximation.

3Note that Xn
ℓ0≤a

is nonconvex if 1 ≤ a < n. A simple example which

shows nonconvexity of X 2
ℓ0≤1 is

1

2

(

1
0

)

+
1

2

(

0
1

)

=
1

2

(

1
1

)

/∈ X 2
ℓ0≤1. (11)

Although the first term and the second term in the left hand side in (11) belong
to X 2

ℓ0≤1, the convex combination of these terms does not belong to X 2
ℓ0≤1.

4Note that Xm×n
r is nonconvex if 1 ≤ r < min{m,n}. A simple

example which shows nonconvexity of X 2×2
1 is

1

2

(

1 0
0 0

)

+
1

2

(

0 0
0 1

)

=
1

2

(

1 0
0 1

)

/∈ X 2×2
1 . (13)

Although the first term and the second term in the left hand side in (13) belong

to X 2×2
1 , the convex combination of these terms does not belong to X 2×2

1 .
5For a complete discussion of the singular value decomposition, see, e.g.,

[30, 31].
6In fact, we have Inc(Rm×n

+ ) ∩ Inc(Xm×n
ℓ0≤a

) ∩ Inc(Xm×n
r ) ∋ 0, as

well as Rm×n
+ , Xm×n

ℓ0≤a
, and Xm×n

r are semi-algebraic.
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Fig. 1. Convergence behavior of PPM (m = 20, n = 15, r = 5).
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Fig. 2. Convergence behavior of PPM (m = 20, n = 15, r = 10).

On the other hand, let us consider a nonnegative and low-rank

matrix approximation problem, i.e., for a given matrix X0 ∈ R
m×n
+ ,

to find a nonnegative and low-rank matrix which approximates X0

well. This task relates to feature extraction from a series of images

(see e.g. [33, 34]). For this task, a natural problem formulation is

find X ∈ R
m×n
+ ∩ Xm×n

r . (15)

Theorem 4 guarantees that PPM applied to (15) converges to a solu-

tion.

Corollary 2. PPM applied to problem (15) with arbitrarily chosen

inital X(0) generates a convergent sequence (X(k))∞k=0 to a point

in R
m×n
+ ∩ Xm×n

r .

Similar to Corollary 1, PPM with initial X0 is expected to be a pow-

erful heuristic algorithm to nonnegative and low-rank matrix approx-

imation.

Remark 3: Although problems (14) and (15) have a trivial solution,

i.e., the zero matrix O ∈ R
m×n, it is not an interesting solution from

the perspective of their signal processing applications. Even though

Theorems 1–4 do not guarantee that PPM converges to a nontrivial

solution, such a case seems to be quite rare. This is demonstrated in

a numerical example in Sect. 6.

6. NUMERICAL EXAMPLE

We conduct a numerical example to investigate convergence behav-

ior of PPM applied to a toy example of the nonconvex feasibility

problem (15). Parameters m,n, r are chosen in two scenarios, i.e.,

(m,n, r) = (20, 15, 5) and (m,n, r) = (20, 15, 10). The weights

of PPM are set as w1 = w2 = 1/2, and the initial point X(0) of

PPM is chosen as a realization of the random matrix whose entry is

drawn from the uniform distribution over [0, 1].
Figure 1 depicts convergence behavior of PPM in the first sce-

nario, i.e, (m,n, r) = (20, 15, 5). Figures 1(a) and 1(b) illustrate

transients of the distance to R
m×n
+ and that to Xr . As Theorem 1,

the distances converge to zero. In addition, they tend to converge

rapidly and linearly though such behavior is not guaranteed by our

analysis. Figure 1(c) depicts transients of
‖X‖F

‖X(0)‖F
. It shows that

all the sequences generated by PPM converges to non-zero matrix.

Hence their limits provide us non-trivial solutions of problem (15).

Figure 2 depicts convergence behavior of PPM in the second

scenario of (m,n, r) = (20, 15, 10). The whole behavior is similar

to the first scenario, but convergences of distances in Figures 2(a)

and 2(b) are swifter than that of the first scenario. Figures 2(c) shows

all realizations provide us non-trivial solutions of problem (15).

These observations demonstrate that the sequence generated by

PPM converges rapidly and its limit is a non-trivial solution of prob-

lem (15) in this numerical example.
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