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ABSTRACT
We consider a non-convex constrained Lagrangian formulation of a
fundamental bi-criteria optimization problem for variable selection
in statistical learning; the two criteria are a smooth (possibly) non-
convex loss function, measuring the fitness of the model to data, and
the latter function is a difference-of-convex (DC) regularization, em-
ployed to promote some extra structure on the solution, like sparsity.
This general class of nonconvex problems arises in many big-data
applications, from statistical machine learning to physical sciences
and engineering. We develop the first unified distributed algorith-
mic framework for these problems and establish its asymptotic con-
vergence to d-stationary solutions. Two key features of the method
are: i) it can be implemented on arbitrary networks (digraphs) with
(possibly) time-varying connectivity; and ii) it does not require the
restrictive assumption that the (sub)gradient of the objective func-
tion is bounded, which enlarges significantly the class of statistical
learning problems that can be solved with convergence guarantees.

Index Terms— Distributed statistical learning, nonconvex opti-
mization, sparse representation, time-varying network.

1. INTRODUCTION
Sparse representation [1] is a fundamental methodology of data sci-
ence in solving a broad range of problems from statistical machine
learning to physical sciences and engineering. Significant advances
have been made in the last decade on constructing intrinsically low-
dimensional solutions in high-dimensional problems via convex pro-
gramming [1–3], due to its favorable theoretical guarantees and many
efficient solution methods. Yet there is increasing evidence support-
ing the use of non-convex formulations to enhance the realism of
the models and improve their generalizations [4–6]. For instance, in
compressed sensing, it is well documented that nonconvex surrogates
of the `0 norm (e.g., the difference of `1 and `2 [4], the SCAD [7],
the “transformed” `1 penalty [6]) outperform the renowned `1 norm.
Motivated by this new line of works, in this paper, we formulate the
problem of learning a sparse parameter x of a statistical model from
a training data setD as the following general nonconvex constrained
Lagrangian-based bi-criteria minimization

min
x∈K

U (x;D) ,
I∑
i=1

fi (x;Di)︸ ︷︷ ︸
F (x;D)

+ λ ·
(
G+ (x)−G− (x)

)︸ ︷︷ ︸
G(x)

,
(P)

where fi is a smooth (possibly) nonconvex function measuring the
fitness of the learning model to (a portion of ) the data set Di ⊆ D;
G is a penalty function, having a DC structure with G+ and G−

being (possibly) nonsmooth and smooth, respectively; λ > 0 is a
parameter balancing the model fitness and sparsity of the solution;
and K ⊆ Rm is a closed, convex set (not necessarily bounded).

Problem (P) is very general and encompasses a variety of con-
vex and nonconvex statistical learning formulations, including least
squares, logistic regression, maximum likelihood estimation, prin-
cipal component analysis, canonical component analysis, and low-
rank approximation [8], just to name a few. Furthermore, the DC
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structure of the penalty function G allows to accomodate in an uni-
fied fashon either convex or nonconvex sparsity-inducing surrogates
of the `0 cardinality function; examples are the `p (p ≥ 1), `1,2
norm, the total variation penalty [9–11], the SCAD [7] function, the
logarithmic [12]/exponential [13] functions, and the `p norm with
0 < p < 1 [14] (cf. Sec. 2 for details).

Common to the majority of the aforementioned learning tasks
is the prohibitively large size of the data set D. Furthermore, in sev-
eral scenarios, e.g., cloud, sensor, or cluster-computer networks, data
Di’s are not centrally available but spread (stored) over a network,
and collecting them can be challenging or even impossible, owing
to the size of the network and volume of data, time-varying con-
nectivity, energy constraints, and/or privacy issues. All in all, the
aforementioned reasons motivate the design of reduced-complexity
decentralized algorithms. This paper addresses this task. Specif-
ically, we consider a network of I agents (nodes), each of them
owing a portion Di of the data set D. The network is modeled as
arbitrary (possibly) time-varying digraph. Designing distributed so-
lution methods for the class of problems (P) in the aforementioned
setting poses several challenges, namely: i) U is nonconvex, non-
smooth, and nonseparable; moreover, each agent i knows only its
own function fi [data Dj , j 6= i, are not available to agent i]; ii)
the network digraph is time-varying, with no specific structure; and
iii) the (sub)gradient of U may not be bounded on K. Current works
cannot address all the above challenges, as briefly documented next.

Most of the literature on distributed optimization deals with con-
vex, unconstrained optimization problems [15–18] over undirected,
static graphs [19–21]. The nonconvex case has been recently studied
in [22–25]. All these works however require that the (sub)gradient
of the objective function is bounded, an assumption that is not sat-
isfied by many formulations (e.g., least squares). Furthermore, [24]
consider only unconstrained problems, and [23] is applicable only to
specific network topologies (e.g., digraphs with a doubly stochastic
adjacency matrix), which limits its practical applicability [26].

In this paper we address all challenges i)-iii) and propose the first
distributed algorithmic framework for the general class of problems
(P). To cope with i) and ii) we introduce a general convexification-
decomposition technique that hinges on our recent SCA methods
[27–29], coupled with a gradient tracking mechanism, instrumental
to locally estimate the missing global information. After updating
their local copy of the common variables x, all agents communicate
some information to their neighbors. This is done using a broad-
cast protocol that requires neither a specific network topology nor
the use of double-stochastic consensus matrices to work [addressing
thus challenge ii)]; only column stochasticity is needed. Asymptotic
convergence to d-stationary solutions of (P) is established, without
requiring any boundedness of the (sub)gradient of U [challenge iii)].
Preliminary numerical results, show that the proposed scheme com-
pare favorably with state-of-the-art algorithms.

2. DISTRIBUTED LEARNING MODEL

We study Problem (P) under the following blanket assumptions.
Assumption A (Problem Setup)
(A1) The set K 6= ∅ is closed and convex;
(A2) Each fi : O → R is C1, with Lipschitz continuous gradient

∇fi on K, where O ⊇ K is an open set;
(A3) G+ : K → R is convex (possibly) nonsmooth and G− :

O → R is convex C1, with gradient∇G−i Lipschitz on K;

4044978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Penalty function Expression

Exp [13] gexp(x) = 1− e−θ|x|
`p(0 < p < 1) [14] g

`+p
(x) = (|x|+ ε)1/θ ,

`p(p < 0) [31] g
`−p

(x) = 1− (θ|x|+ 1)p

SCAD [7] gscad(x)=


2θ
a+1
|x|, 0 ≤ |x| ≤ 1

θ
−θ2|x|2+2aθ|x|−1

a2−1
, 1

θ
< |x| ≤ a

θ

1, |x| > a
θ

Log [12] glog(x) = log(1+θ|x|)
log(1+θ)

Table 1: Examples of DC penalty functions satisfying A3 [cf. (1)]

(A4) Problem (P) has a solution.

Assumptions above are quite general and satisfied by several
loss and penalty functions, proposed in the literature. For instance,
(nonconvex) quadratic, Huber, and logistic loss functions fall un-
der A2. A3 is satisfied by (nonsmooth) convex functions and the
majority of sparsity-inducing nonconvex surrogates of the `0 norm
proposed up to date; Table 1 summarizes the majority of the latter
functions. One can see that all functions G therein are separable,
G (x) ,

∑m
j=1 g (xj), with g : R → R having the following DC

form [30]
g (x) = η (θ) |x|︸ ︷︷ ︸

,g+(x)

− (η (θ) |x| − g (x))︸ ︷︷ ︸
,g−(x)

, (1)

where η (θ) is a given function, whose expression depends on the
surrogate g under consideration, see Table 2. It can be shown that
for all the functions in Table 1, g− (x) has Lipschitz continuous gra-
dient [30] (the closed form is given in Table 2), implying that A3 is
satisfied. We conclude this list of examples satisfying A1-A4, with
two concrete sparse representation problems.
Example #1 (Sparse Linear Regression): Consider the problem of
retrieving a sparse signal x from observations {bi}Ii=1, where each
bi = Aix is a linear measurement of the signal. The problem reads

min
x

I∑
i=1

‖bi −Aix‖2 + λG (x) , (2)

where G can be any of the penalty functions discussed above. For
instance, if G is the `2 and `1 norm, (2) reduces to the ridge and
LASSO regression, respectively. Problem (2) is clearly an instance
of (P) with Di , {(Ai,bi)} and fi (x,Di) , ‖bi −Aix‖2.
Example #2 (Sparse PCA): Consider finding the sparse principal
component of a data set given by the rows of matrices Di’s, which
leads to

max
‖x‖2≤1

I∑
i=1

‖Dix‖2 − λG (x) , (3)

whereG is some regularizer satisfying A3. Clearly, (3) is a (noncon-
vex) instance of Problem (P), withDi , {Di} and fi , −‖Dix‖2.
Network Topology. Time is slotted and, at each time-slot n, the
communication network of agents is modeled as a (possibly) time-
varying digraph G [n] = (V, E [n])), where the set of vertices V =
{1, . . . , I} represents the set of I agents, and the set of edges E [n]
represents the agents’ communication links. The in-neighborhood
of agent i at time n (including node i) is defined as N in

i [n] =
{j|(j, i) ∈ E [n]}∪{i}whereas its out-neighbor is defined asN out

i [n] =
{j| (i, j) ∈ E [n]} ∪ {i}. The out-degree of agent i is defined
as di [n] ,

∣∣N out
i [n]

∣∣. To let information propagate over the net-
work, we assume that the graph sequence (G [n])n∈N possesses some
“long-term” connectivity property, as formalized next.
Assumption B (On the graph connectivity). The graph sequence
{G[n]}n∈N isB-strongly connected, i.e., there exists an integerB >

g η(θ) ∇g−θ (x)

gexp θ sign(x) · θ · (1− e−θ|x|)
g
`+p

1
θ
ε1/θ−1 1

θ
sign(x) · [ε

1
θ
−1 − (|x|+ ε)

1
θ
−1]

g
`−p

−p · θ −sign(x) · p · θ · [1− (1 + θ|x|)p−1]

gscad
2θ
a+1


0, |x| ≤ 1

θ

sign(x) · 2θ(θ|x|−1)

a2−1
, 1

θ
< |x| ≤ a

θ

sign(x) · 2θ
a+1

, otherwise

glog
θ

log(1+θ)
sign(x) · θ2|x|

log(1+θ)(1+θ|x|)

Table 2: Explicit expression of η(θ) and∇g−(x) [cf. (1)]

0 (possibly unknown to the agents) such that the graph with edge set
∪(k+1)B−1
t=kB E [t] is strongly connected, for all k ≥ 0.

As a non-convex optimization problem, globally optimal solu-
tions of (P) are in general not possible to be computed. Thus, one has
to settle for computing a “stationary” solution in practice. Among all
the stationarity concepts, arguably, a d(irectional)-stationary solution
is the sharpest kind of stationarity for the class of convex constrained
nonconvex nonsmooth problem (P); see, e.g., [32].

Definition 1 (d-stationarity). A point x∗ ∈ K is a d-stationary solu-
tion of (P) if U ′ (x∗; x− x∗) ≥ 0, ∀x ∈ K, where U ′ (x∗; x− x∗)
is the directional derivative of U at x∗ along the direction x− x∗.

Quite interestingly, such nonzero d-stationary solutions have been
proved to possess some sparsity (and even minimizing) property, un-
der a set of assumptions, including a specific choices of F , G, and
λ in (P); we refer to [33] for details. Motivated by these results, our
goal is then to devise algorithms converging to d-stationary solutions
of Problem (P), in the above distributed setting.

3. ALGORITHM DESIGN
We start introducing an informal description of the algorithm that
sheds light on the main ideas behind the proposed framework.

Each agent imaintains a copy of the common optimization vari-
able x, denoted by x(i), which needs to be updated locally at each
iteration so that asymptotically 1) x(i) reaches a d-stationary point of
Problem (P); and 2) all x(i)’s are consensual, i.e., x(i) = x(j), ∀i 6=
j. To do so, the proposed algorithm framework combines SCA tech-
niques (Step 1 below) with a consensus-like step implementing a
novel broadcast protocol (Step 2), as described next.
Step 1: Local SCA. At iteration n, agent i should solve (P). How-
ever, F − G− is nonconvex and

∑
j 6=i fj in F is unknown. To

cope with these issues, agent i solves instead an approximation of
(P) wherein F −G− is replaced by the strongly convex function F̃i:

F̃i
(
x(i); x

n
(i)

)
, f̃i

(
xi; x

n
(i)

)
−∇G−

(
xn(i)
)> (

xi − xn(i)
)

+ π̃n>i
(
xi − xn(i)

)
,

(4)

where f̃i : K → R should be regarded as a (simple) strongly convex
approximation of fi at the current iterate xn(i) that preserves the first
order properties of fi (see Assumption C below); the second term is
the linearization of the concave smooth function −G−; and the last
term accounts for the lack of knowledge of

∑
j 6=i fj : π̃ni aims to

track the gradient of
∑
j 6=i fj . In Step 2 we will show how to update

π̃ni so that ‖π̃ni −
∑
j 6=i∇fj

(
xn(i)
)
‖ −→
n→∞

0 while using only local

information. We require f̃i to satisfy the following mild assumptions
(∇f̃i is the partial gradient of f̃i w.r.t. the first argument).
Assumption C (On the surrogate function f̃i).
(C1) ∇f̃i (x; x) = ∇fi (x), for all x ∈ K;
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(C2) f̃i (•; y) is uniformly strongly convex on K;
(C3) ∇f̃i (x; •) is uniformly Lipschitz continuous on K.

A wide array of choices for f̃i satisfying Assumption C can be
found in [27], see Sec. 3.1 for some significant examples.

Agent i thus solves the following strongly convex problem:
x̃n(i) = argmin

x(i)∈K
F̃i
(
x(i); x

n
(i)

)
+G+ (x(i)

)
, (5)

and updates its own local estimate xn(i) moving along the direction
x̃n(i) − xn(i) by a quantity (step-size) αn > 0:

vn(i) = xn(i) + αn
(
x̃n(i) − xn(i)

)
. (6)

Step 2: Information mixing. We need to introduce now a mecha-
nism to ensure that the local estimates xn(i)’s eventually agree while
π̃ni ’s track the gradients

∑
j 6=i∇fj(x(i)). Building on [25], consen-

sus over time-varying digraphs without requiring the knowledge of
the sequence of digraphs and a double-stochastic weight matrix can
be achieved employing the following broadcasting protocol: given
vn(i), each agent i updates its own local estimate xn(i) together with
one extra scalar variable φni according to

φn+1
i =

∑
j∈N in

i [n]

anijφ
n
j , and xn+1

(i) =
1

φn+1
i

∑
j∈N in

i [n]

anijφ
n
j vn(j),

(7)
where φ0

i = 1 for all i and anij’s are some weighting coefficients
matching the graph G[n] in the following sense.
Assumption D (On the weighting matrix). For all n ≥ 0, the
matrices A[n] , (anij)i,j are chosen so that
(D1) anii ≥ κ > 0 for all i = 1, . . . , I;
(D2) anij ≥ κ > 0, if (j, i) ∈ E [n]; and anij = 0 otherwise;
(D3) A[n] is column stochastic, i.e., 1TA[n] = 1T .

Some practical rules satisfying the above assumption are given in
Sec. 3.1. Here, we only remark that, differently from most of the pa-
pers in the literature [15,23,34], A[n] need not be double-stochastic
but just column stochastic, which is a much weaker condition. This
can be achieved thanks to the extra variables φni in (7), whose goal
roughly speaking is to dynamically build the missing row-stochasticity,
so that asymptotic consensus among xn(i)’s can be achieved.

A similar scheme can be put forth to update π̃i’s building on the
gradient tracking mechanism, first introduced in our work [23], and
leveraging the information mixing protocol (7), the desired update
reads (we omit further details because of the space limitation): each
agent imaintains an extra (vector) variable yn(i) [initialized as yn(i) =

∇fi
(
x0
(i)

)
]; and consequently π̃i are updated according to

yn+1
(i) =

1

φn+1
i

∑
j∈N in

i [n]

anij

(
φnj yn(j) +∇fj(xn+1

(j) )−∇fj(xn(j))
)
,

π̃n+1
i = I · yn+1

(i) −∇fi
(
xn+1
(i)

)
. (8)

Note that the update of y(i) and π̃i can be performed locally by
agent i, with the same signaling as for (7). One can show that if
xn(i)’s and yn(i)’s are consensual (a fact that is proved in Th. 1), ‖π̃ni −∑
j 6=i∇fj

(
xn(i)
)
‖ −→
n→∞

0.

We can now formally introduce the proposed algorithm, as given
in Algorithm 1; its convergence properties are stated in Theorem 1
(the proof is omitted because of space limitation; see [35]).
Theorem 1. Let

{
(xn(i))

I
i=1

}
n

be the sequence generated by Algo-

rithm 1, and let {z̄n , (1/I)
∑
i φ

n
i xn(i)}n. Suppose that i) As-

sumptions A-D hold; ii) the step-size sequence {αn}n is chosen so
that αn ∈ (0, 1],

∑∞
n=0 α

n = +∞, and
∑∞
n=0(αn)2 < +∞.

Then, the following hold: (1) z̄n is bounded for all n, and every
limit point of z̄n is a d-stationary solution of Problem (P); and (2)∥∥xn(i) − z̄n

∥∥→ 0 as n→ +∞ for all i.

Algorithm 1: Distributed Sparse learning Algorithm
(DSparsA)

Data: For all agent i, x0
(i) ∈ K, φ0

i = 1, y0
(i) = ∇fi

(
x0
(i)

)
,

π̃0
i = Iy0

(i) −∇fi
(
x0
(i)

)
. Set n = 0.

[S.1] If xn(i) satisfies termination criterion: STOP;
[S.2] Distributed Local SCA: Each agent i:

(a) computes locally x̃n(i) [cf. (5)].
(b) updates its local variable v(i) according to (6).

[S.3] Consensus: Each agent i broadcasts its local
variables and sums up the received variables:

(a) Update φn+1
i and xn+1

(i) using (7).
(b) Update yn+1

(i) and π̃n+1
i using (8).

[S.4] n←− n+ 1, go to [S.1]

Roughly speaking, Th. 1 states two results: 1) the weighted aver-
age z̄n of the xi’s converges to a d-stationary solution of (P); 2) the
xi’s asymptotically agree on the common value z̄n. We remark that
convergence is proved without requiring that the (sub)gradients of F
orG be bounded; this is a major achievement with respect to current
distributed methods for nonconvex problems [24, 25, 36, 37].

3.1. Discussion
On the choice of f̃i: Assumption C is mild and offers a lot
of flexibility in the choice of f̃i. Some examples are the following:
−Linearization: One can always linearize fi, which leads to f̃i(x(i);

xn(i)) = fi
(
xn(i)
)

+∇fi
(
xn(i)
)> (

x(i) − xn(i)
)

+ τi
2
‖x(i)−xn(i)‖2.

−Partial Linearization: Consider the case that fi can be decom-
posed as fi(x(i)) = f

(1)
i (x(i)) + f

(2)
i (x(i)), where f (1)

i is convex
and f (2)

i is nonconvex with Lipschitz continuous gradient. Preserv-
ing the convex part of fi while linearizing f (2)

i leads to the following
valid surrogate f̃i(x(i); x

n
(i)) = f

(1)
i (x(i)) + f

(2)
i (xn(i)) + τi

2
‖xi −

xn(i)‖2 +∇f (2)
i (xn(i))

>(xi − xn(i)). We refer the readers to [23, 27]
for more choices of surrogates.

On the choice of the step-size. Several options are
possible for the step-size sequence {αn}n satisfying the standard
diminishing-rule in Th. 1; see, e.g., [38]. Two instances we found to
be effective in our experiments are: (1) αn = α0/ (n+ 1)β , with
α0 > 0 and 0.5 < β ≤ 1; and (2) αn = αn−1

(
1− µαn−1

)
, with

α0 ∈ (0, 1], and µ ∈ (0, 1).

On the choice of matrix A[n]. In a digraph satisfying
Assumption B, A[n] can be set to

anij =

{
1/dj [n] (j, i) ∈ E [n],

0 otherwise;
(9)

where di[n] is the out-degree of agent i. Note that the message
passing protocol in (7) and (8) based on (9) can be easily imple-
mented: all agents only need to i) broadcast their local variables
normalized by their current out-degree; and ii) collect locally the in-
formation coming from their neighbors. Note that in the special case
that the undirected graph, A[n] becomes symmetric; consequently
φi[n] = 1 for all i = 1, . . . , I and n ∈ N+ [i.e., the update of φ
in step (7) can be eliminated], and Assumption D3 is readily satis-
fied choosing A[n] according to rule proposed in the literature for
double-stochastic matrices; some widely used rules are: the uniform
weights [39], Laplacian weights [40], and the Metropolis-Hastings
weights [41].
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4. NUMERICAL RESULTS
In this section we test DSparsA on two instances of Problem (P),
namely: i) the sparse linear regression problem (2) with the “Log”
penalty function; and ii) the sparse PCA problem (3) with the SCAD
penalty function given in Table 1. For both problems, we simulated
a network composed of I = 30 users; the sequence of time-varying
digraphs is such that, at each time slot, the graph is strongly con-
nected and every agent has two out-neighbors.
Example #1: Sparse regression. Consider Problem (2), where G is
the “Log” penalty function given in Table 1. The underlying sparse
linear model is bi = Aix0 + ni, where Ai ∈ R20×200 is the sens-
ing matrix (with rows normalized to one), x0 ∈ R200 is the unknown
signal, and ni is the observation noise, all randomly generated, with
i.i.d Gaussian entries. Each component of the noise vector has stan-
dard deviation σi = 0.1. To impose sparsity on x0, we set to zero,
uniformly at random, 80% of its component. Finally, we set θ = 20
[cf. Table 1] and λ = 0.5. We tested the following two instances of
DSparsA: i) DSparsA-SCA, wherein the surrogate function f̃i coin-
cides with fi, since fi is already convex. In this case, to compute
x̃n(i), each agent needs to solve a LASSO problem, which can be ef-
ficiently done using the FLEXA algorithm [27]; and ii) DSparsA-L,
where f̃i is constructed by linearizing f̃i at xn(i), as shown in Sec. 3.1,
where ∇fi

(
xn(i)
)

= 2A>i
(
Aix

n
(i) − bi

)
. Consequently, the up-

date x̃n(i) has the following closed form

x̃n(i) = S ηλ
τi

{
xn(i) −

1

τi

(
∇fi

(
xn(i)
)

+ π̃ni − λ · ∇G−
(
xn(i)
))}

,

where Sηλ/τi(•) is the soft-thresholding operator, defined as Sλ (x) ,
sign (x) ·max (|x| − λ, 0), and the explicit expression of η(θ) and
∇G− is given in row 5 of Table 2.

Since there are no convergent distributed schemes in the liter-
ature for the problem under consideration, we compare our algo-
rithms with the subgradient-push algorithm [37], developed for con-
vex functions with bounded subgradients. We report results achieved
with the following tuning of the algorithms (which provided the best
performance, among all the choices we tested). For all algorithms,
we used the step-size rule (2), as given in Sec. 3.1: in DSparsA, we
set α0 = 0.1 and µ = 10−3 whereas for the subgradient-push we
used α0 = 1 and µ = 10−2. Finally, in DSparsA, we set τi = 2
for all i. We use two merit functions to measure the progresses of
the algorithms, namely: i) Jn , ||z̄n − Sηλ{z̄n − (∇F (z̄n) − λ ·
∇G−(z̄n))}||∞, which measures the distance of the weighted aver-
age zn from d-stationarity (note that such a function is zero if and
only if the argument is a d-stationary solution of (2)); and ii)Dn ,
maxi{‖xn(i) − z̄n‖∞} , which measures how far the agents are to
reach consensus. In Fig. 1(a) [resp. Fig. 1(b)] we plot Dn and Jn

[resp. the normalized MSE, defined as NMSEn = 1
I

∑I
i=1 ||x

n
(i) −

x0||22/||x0||22] achieved by all the algorithms vs. the total number of
communication exchanges per node. For the subgradient-push algo-
rithm, this number coincides with the iteration index n whereas for
DSparsAs it is 2n. All the curves are averaged over 100 indepen-
dent noise realizations. The figures clearly show that both versions
of DSparsA are much faster than the subgradient-push algorithm (or,
equivalently, they require less information exchanges), which is not
even guaranteed to converge. Moreover, as expected, DSparsA-SCA
reaches high precision faster than DSparsA-L; this is mainly due to
the fact that the surrogate function in the former retains the partial
convexity of fi rather than just linearizing it.
Example#2: Distributed Sparse PCA. Consider the sparse PCA
problem (3), where G is the SCAD penalty function [cf. Table 1];
θ = 20, a = 2, and λ = 5. The rows of data matrix Di ∈ R500×30
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Fig. 1: Sparse linear regression: Optimality measurements Jn

and consensus disagreement Dn [subplot (a)] and normalized MSE
NMSEn [subplot (b)] versus per-node communication exchanges.
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Fig. 2: Sparse PCA: Optimality measurements Jn and consensus
disagreement Dn [subplot (a)] and normalized MSE NMSEn [sub-
plot (b)] versus per-node communication exchanges.

are generated as i.i.d Gaussian random vectors of mean zero and co-
variance Σ. The leading eigenvector u1of Σ with eigenvalue 12 is
dense, while the next two eigenvectors u2 and u3 are of cardinality
5 with eigenvalues being 10 and 8, respectively. The rest of the ui’s
are randomly generated with eigenvalue less than 5. The task is to
estimate u2 from the Di’s. Since fi is concave, the surrogate func-
tion f̃i is obtained by linearizing fi [cf. Sec. 3.1]. The convexified
optimization problem of agent i’s reads

min
‖x‖2≤1

gn>i x +
τi
2

∥∥x− xn(i)
∥∥2 + λG+ (x) , (10)

where gni = ∇fi
(
xn(i)
)
+π̃ni −∇G−

(
xn(i)
)
, and we set τi = 10−3.

The unique solution x̃ni of (10) can be efficiently obtained using the
soft-thresholding operator, followed by a scalar bi-section; we omit
the details because of space limitation.

We compare DSparsA with subgradient-push, where we added
a projection step after the gradient descent to maintain feasibility.
Note that there is no formal proof of convergence for such an algo-
rithm. For both algorithms, we used the step-size rule (2), as given
in Sec. 3.1: in DSparsA, we set α0 = 1, and µ = 10−3 whereas
for the subgradient-push we used α0 = 0.1 and µ = 10−2. Since
Problem (3) is constrained, we modify the stationarity measure as
Jn , ‖x̂(z̄n) − z̄n‖∞, with x̂(z̄n) , argmin‖x‖≤1{λG

+ (x) +(
∇F (z̄n)− λ∇G− (z̄n)

)>
x + ‖x− z̄n‖2 /2}. In Fig. 2(a) [resp.

Fig. 2(b)] we plot Dn and Jn [resp. NMSEn, which is defined as in
Example #1, with x0 replaced by u2] achieved by all the algorithms
versus the total number of communication exchanges per node. All
the curves are averaged over 100 independent data generations. The
figures show that DSparsA significantly outperforms the subgradient
method both in terms of convergence speed and MSE.

5. CONCLUSIONS
We have proposed the first unified distributed algorithmic frame-
work for the computation of d-stationary solutions of a fairly gen-
eral class of non convex statistical learning problems. Our scheme
is implementable over time-varying network with arbitrary topology
and does not require that the (sub)gradient of the objective function
is bounded on the feasible set of the problem.
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admm: A communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no.
10, pp. 2718–2723, May 2013.

[21] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: convergence analysis and network scaling,”
IEEE Transactions on Automatic control, vol. 57, no. 3, pp. 592–606,
Mar. 2012.

[22] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE
Transactions on Automatic Control, vol. 58, no. 2, pp. 391–405, Feb.
2013.

[23] P. D. Lorenzo and G. Scutari, “NEXT: in-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, Jun. 2016.

[24] T. Tatarenko and B. Touri, “Non-convex distributed optimization,”
arXiv preprint arXiv:1512.00895, 2015.

[25] Y. Sun, G. Scutari, and D. P. Palomar, “Distributed nonconvex mul-
tiagent optimization over time-varying networks,” arXiv preprint
arXiv:1607.00249, 2016.

[26] B. Gharesifard and J. Cortés, “When does a digraph admit a doubly
stochastic adjacency matrix?,” in Proceedings of the 2010 American
Control Conference, Baltimore, MD, June 2010, pp. 2440–2445.

[27] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algo-
rithms for nonconvex big data optimization,” IEEE Transactions on
Signal Processing, vol. 63, no. 7, pp. 1874–1889, Apr. 2015.

[28] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, “De-
composition by partial linearization: Parallel optimization of multi-
agent systems,” IEEE Transactions on Signal Processing, vol. 62, no.
3, pp. 641–656, Feb. 2014.

[29] A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari, “Hybrid
random/deterministic parallel algorithms for convex and nonconvex big
data optimization,” IEEE Transactions on Signal Processing, vol. 63,
no. 15, pp. 3914–3929, 2015.

[30] H.A. Le Thi, T. Pham Dinh, H.M. Le, and X.T. Vo, “DC approximation
approaches for sparse optimization,” European Journal of Operational
Research, vol. 244, no. 1, pp. 26–46, 2015.

[31] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for
best basis selection,” IEEE Transactions on Signal Processing, vol. 47,
no. 1, pp. 187–200, Jan 1999.

[32] Jong-Shi Pang, Meisam Razaviyayn, and Alberth Alvarado, “Com-
puting b-stationary points of nonsmooth dc programs,” arXiv preprint
arXiv:1511.01796, 2015.

[33] Miju Ahn, Jong-Shi Pang, and Jack Xinz, “Difference-of-convex learn-
ing I: Directional stationarity, optimality, and sparsity,” submitted for
publication, 2016.
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