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ABSTRACT

We present an incremental Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method as a quasi-Newton algorithm with a cyclically iterative update
scheme for solving large-scale optimization problems. The proposed
incremental quasi-Newton (IQN) algorithm reduces computational cost
relative to traditional quasi-Newton methods by restricting the update to
a single function per iteration and relative to incremental second-order
methods by removing the need to compute the inverse of the Hessian. A
local superlinear convergence rate is established and a strong improve-
ment is shown over first order methods numerically for a set of common
large-scale optimization problems.

Index Terms— Stochastic optimization, quasi-Newton, incremental
method, superlinear convergence

1. INTRODUCTION

We study a large scale optimization problem where we seek to minimize
an objective function that is an aggregation of many component objective
functions. To be more precise, consider a variable x ∈ Rp and a function
f which is defined as the average of n strongly convex functions labelled
fi : Rp → R for i = 1, . . . , n. Our goal is to find the optimal point x∗

as the solution to the problem

x∗ = argmin
x∈Rp

f(x) := argmin
x∈Rp

1

n

n∑
i=1

fi(x), (1)

in a computationally efficient manner even when n is large. Problems of
this form arise in machine learning [1–4], control problems [5–7], and
wireless communication [8–10].

Much of the theory that has been developed to solve (1) is centered
on the use of iterative descent methods. For large scale machine learn-
ing and optimization settings, n can be very large and the full gradient is
often too costly to compute at each iteration. As an alternative, stochas-
tic methods seek to find a solution to (1) while computing only a subset
of the total n gradients at each iteration, thus significantly reducing the
computational burden. The simplest version of a stochastic algorithm
is stochastic gradient descent (SGD), which at each time step t draws
a random index it and performs a descent using the gradient of only a
single function [2]. More sophisticated stochastic first order methods
use variance-reduced gradients (e.g. SVRG [11]) or averaging gradients
(e.g. SAG [12, 13], SAGA [14]) to reduce computation cost while re-
taining a linear convergence rate. Moving beyond first order information,
there have been stochastic quasi-Newton methods to approximate Hes-
sian information [15–19]. All of these stochastic quasi-Newton methods
reduce computational cost of quasi-Newton methods by updating only
a randomly chosen single or small subset of gradients at each iteration.
However, they are not able to recover the superlinear convergence rate of
quasi-Newton methods [20–22].

Alternatively to stochastic methods are incremental methods, which
deterministically iterate through all component functions in a cyclic fash-
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ion, again only computing a single gradient or Hessian per iteration. In-
cremental methods have been used with both aggregated gradients [23,
24] and second-order Hessian information [25, 26] . The incremental
Newton method (NIM) in [26] is the only incremental method shown to
have a superlinear convergence rate; however, the Hessian function is not
always available or computationally feasible. Moreover, the implementa-
tion of NIM requires computation of the incremental aggregated Hessian
inverse which has the computational complexity of the order O(p3).

We propose an incremental variant of BFGS which achieves a greater
local convergence rate than that of first order incremental or stochastic
methods while reducing the computational cost per iteration toO(p2) by
using an incremental aggregated approximation of the Hessian.

We begin with the paper by introducing the well-known BFGS
method and its update for solving (1) (Section 2). While incremental
methods have been used in first order methods, they achieve only a linear
convergence rate. We introduce an incremental quasi-Newton (IQN)
method that requires only computing a single gradient and Hessian ap-
proximation per iteration (Section 3). The proposed IQN method uses an
approximation of second-order information that requires less cost than
computing the Hessian inverse directly while maintaining its superior an-
alytical and numerical performance. The local superlinear convergence
of IQN is established (Section 4) and performance advantages relative to
first order stochastic and incremental methods are evaluated numerically
(Section 5). Proofs for results presented are found in [27].

2. BFGS QUASI-NEWTON METHOD

Consider the problem in (1) for a relatively large n. In a conventional
optimization setting, it can be solved using a descent method, such as
gradient descent or Newton’s method, which iteaitivley updates a variable
xt for t = 0, 1, . . . using the general recursive expression

xt+1 = xt + ηtdt, (2)

where ηt is a scalar step size and dt is the descent direction at time t—
defined as either dt := −∇f(xt) or dt := −(∇2f(xt))−1∇f(xt) for
gradient descent and Newton’s method, respectively. In both cases, itera-
tions xt converge to the optimal solution x∗. Gradient descent, however,
using only the first-order information contained in the gradient converges
at a linear rate while Newton’s method, using second-order information
in the Hessian, converges at a significantly faster quadratic rate [28].

In the case that the Hessian information required in Newton’s method
is either unavailable or too costly to evaluate, quasi-Newton methods
have been developed to approximate second-order information to im-
prove upon the convergence rate of first order methods [20]. Quasi-
newton methods perform an update using a descent direction of the form
dt := −(Bt)−1∇f(xt), where Bt is an approximation of the Hessian
∇2f(xt). There are different approaches to approximate the Hessian,
with the most popular being the method of Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [20–22]. In BFGS, two auxiliary variables are defined to
capture difference in variables and gradients of successive iterations, i.e.

st := xt+1 − xt, yt := ∇f(xt+1)−∇f(xt). (3)
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Then, given the variable variation st and gradient variation yt, the Hes-
sian approximation is updated using the recursive equation

Bt+1 = Bt +
ytyt

T

ytT st
− Btstst

T
Bt

stTBtst
. (4)

The BFGS method is popular not only for its strong numerical perfor-
mance relative to the gradient descent method, but also because it is
shown to exhibit a superlinear convergence rate [20], thereby providing
a theoretical guarantee of superior performance. In fact, it can be shown
that, for the BFGS update the equation

lim
t→∞

‖(Bt −∇2f(x∗))st‖
‖st‖ = 0 (5)

known as the Dennis-Moré condition, which is both necessary and suffi-
cient for superlinear convergence [22], is satisified. This result solidifies
quasi-Newton methods as a strong alternative to first order methods when
exact second-order information is unavailable.

3. INCREMENTAL QUASI-NEWTON METHOD

We introduce a novel incremental quasi-Newton (IQN) algorithm, in
which the updated gradient information of only a single function fi
is updated at each iteration. Consider that each component Hessian
∇2fi(x

t) is approximated with Bt
i and define n copies of the variable

xt, notated as zt1, zt2, . . . , ztn, each corresponding to a different function
fi. In particular, zti shows the vector x at the last time before step t that
function fi is chosen to update descent direction.

We define the update of Hessian approximation Bt
i using the tradi-

tional BFGS update in (3)-(4), but instead using the i-th copies zti and
zt+1
i in place of xt and xt+1. We redefine the variable and gradient dif-

ferences associated with the function fi as

sti := zt+1
i − zti yti := ∇fi(zt+1

i )−∇fi(zti), (6)

Note that if at step t + 1 and t − τ , where τ ≥ 0, the function fi is
chosen for updating the gradient information, then we have zt+1

i = xt+1

and zti = xt−τ . In particular, if we use a cyclic scheme for choosing the
functions we have τ = n−1, i.e., zti = xt−n+1. This observation shows
that the variable and gradient variation defined in (6) can be written as
sti := xt+1 − xt−τ and yti := ∇fi(xt+1

i ) − ∇fi(xt−τi ). Therefore,
these definitions are different from the ones for classic BFGS in (3)-(4).
Likewise, the Hessian approximation of the IQN is different from BFGS
in using sti and yti instead of st and yt. Thus, the Hessian approximation
Bt
i corresponding to the function fi is updated as

Bt+1
i = Bt

i +
ytiy

tT
i

ytTi sti
− Bt

is
t
is
tT
i Bt

i

stTi Bt
is
t
i

. (7)

To derive the full variable update, we use an approach similar to that
used in the Newton-type Incremental Method (NIM) [26]. Consider the
second-order approximation of the function fi(x) centered around zti as

fi(x) ≈ fi(zti) +∇fi(zti)T (x− zti)

+
1

2
(x− zti)

T∇2fi(z
t
i)(x− zti). (8)

As in traditional quasi-Newton methods, we replace the i-th Hessian
∇2fi(z

t
i) by Bt

i . Using the approximation matrices in place of Hessians,
the objective function f(x) = (1/n)

∑n
i=1 fi(x) can be approximated

with

f(x) ≈ 1

n

n∑
i=1

fi(z
t
i) +

1

n

n∑
i=1

∇fi(zti)T (x− zti)

+
1

n

n∑
i=1

1

2
(x− zti)

TBt
i(x− zti). (9)

Considering the approximation in (9), we approximate the optimal argu-
ment of f(x) by the optimal argument of the function in (9). Thus, we de-
fine x̂t+1 := argmin{(1/n)

∑n
i=1 fi(z

t
i)+(1/n)

∑n
i=1∇fi(z

t
i)
T (x−

zti) + (1/2n)
∑n
i=1(x − zti)

TBt
i(x − zti)} as the auxialiary variable at

iteration t+ 1. Solving this quadratic programming yields the following
closed-form update for the variable x̂t+1

x̂t+1 =

(
1

n

n∑
i=1

Bt
i

)−1 [
1

n

n∑
i=1

Bt
iz
t
i −

1

n

n∑
i=1

∇fi(zti)

]
. (10)

As in traditional descent methods, we introduce a step size 0 ≤ ηt ≤ 1
and define the variable xt+1 corresponding to step t+ 1 as the weighted
average of the previous iterate xt and the evaluated auxiliary variable
x̂t+1, i.e.,

xt+1 = ηtx̂t+1 + (1− ηt)xt. (11)

From here, it remains to show how the individual variable copies zti
and Hessian approximations Bt

i are updated. We use a cyclic update
scheme to remove the need to compute all gradients and Hessian approx-
imations at each iteration. Therefore, if we define it as the index of the
function chosen at step t, it is updated by cyclically iterating through all
indices in order, i.e., it = {1, 2, . . . , n, 1, 2, . . .}. At time t, we update
the variable copies as

zt+1
it

= xt+1, zt+1
i = zti for all i 6= it. (12)

Thus only a single variable zt+1
it

is changed at time t while all others are
kept the same. Note that the variable differences in (6) will be null unless
i = it and thus only one approximation Bt

it will change at each time t.
To see that this updating scheme requires evaluation of only a single

gradient and Hessian approximation matrix per iteration, consider writing
the update in (17) as

x̂t+1 = (B̃t)−1 (ut − gt
)
, (13)

where we define as the aggregate Hessian approximation B̃t :=
∑n
i=1 B

t
i ,

the aggregate Hessian-variable product ut :=
∑n
i=1 B

t
iz
t
i , and the ag-

gregate gradient gt :=
∑n
i=1∇fi(z

t
i). Then, given that at step t only a

single index is updated, we can evaluate these variables for step t+ 1 as

B̃t+1 = B̃t +
(
Bt+1
it
−Bt

it

)
, (14)

ut+1 = ut +
(
Bt+1
it

zt+1
it
−Bt

itz
t
it

)
, (15)

gt+1 = gt +
(
∇fit(z

t+1
it

)−∇fit(z
t
it)
)
. (16)

Thus, only a single Bt+1
it

and ∇fit(zt+1
it

) need to be computed at each
iteration, significantly reducing the computation burden of the algorithm
relative to traditional quasi-Newton methods.

Although the update of the matrix B̃t in (7) reduces computational
complexity of the IQN method, the update in (13) requires computation
of the inverse matrix (B̃t)−1 which has a expensive computational com-
plexity of the order O(p3). This extra computation cost can be avoided
using the fact that the update in (7) can be simplified as

B̃t+1 = B̃t +
ytity

tT
it

ytTi sitt
−

Bt
its

t
its

tT
it B

t
it

stTit B
t
it
stit

. (17)

To derive the expression in (17) we have substituted the difference
Bt+1
it
−Bt

it by its rank two expression in (7). By applying the Sherman-
Morrison formula twice to the update in (17) we can directly compute
the inverse matrix (B̃t+1)−1 as

(B̃t+1)−1 = Ut +
Ut(Bt

its
t
it)(B

t
its

t
it)

TUt

stit
TBt

it
stit − (Bt

it
stit)

TUt(Bt
it
stit)

, (18)
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Algorithm 1 Incremental Quasi-Newton (IQN) method

Require: x0,{∇fi(x0)}ni=1, {B0
i }ni=1, ηt

1: Set z01 = · · · = z0n = x0

2: Set (B̃0)
−1

= (
∑n
i=1 B

0
i )
−1, u0 =

∑n
i=1 B

0
ix

0, g0 =∑n
i=1∇fi(x

0)
3: for t = 0, 1, 2, . . . do
4: Set it = (t mod n) + 1

5: Compute x̂t+1 = (B̃t)−1
(
ut − gt

)
[cf. (13)]

6: Update xt+1 = ηtx̂t+1 + (1− ηt)xt [cf. (11)]
7: Compute st+1

it
, yt+1

it
[cf. (6)], and Bt+1

it
[cf. (7)]

8: Set zt+1
it

= xt+1, and zt+1
i = zti for i 6= it [cf. (12)]

9: Update ut+1 [cf. (15)], gt+1 [cf. (16)], and (B̃t+1)−1 [cf. (18)]
10: end for

where the matrix Ut can be evaluated as

Ut = (B̃t)−1 −
(B̃t)−1ytity

tT
it (B̃t)−1

ytTit s
t
it

+ ytTit (B̃t)−1ytit
. (19)

Note that the computations in (18) and (19) have computational complex-
ity of the orderO(p2) which is significantly lower than theO(p3) cost of
computing the inverse directly.

The complete IQN algorithm is outlined in Algorithm 1. Beginning
with initial variable x0 and gradient and Hessian estimates ∇fi(x0) and
B0
i for all i, each variable copy z0i is set to x0 in Step 1 and initial values

are set for u0, g0 and (B̃0)−1 in Step 2. For all t, in Step 4 the index
it of the next function to update is selected cyclically. Then, x̂t+1 and
the next variable xt+1 are computed using (13) and (11) in Steps 5 and 6,
respectively. The new BFGS variables st+1

it
, yt+1

it
, and Bt+1

it
are updated

in Step 7. In Step 8, the new variable zt+1
it

is updated as xt+1, keeping
other zt+1

i the same. Finally, the BFGS variables are used in Step 9
to update ut+1, gt+1, and (B̃t+1)−1. We proceed to analyze the local
convergence properties of the IQN method.

4. CONVERGENCE ANALYSIS

We make two assumptions in our analysis of IQN, both of which are
standard for second-order optimization methods. The first assumption
establishes both strong convexity and Lipschitz continuous gradients for
each component function fi.

Assumption 1 There exist positive constants 0 < µ ≤ L such that, for
all i ∈ {1, . . . , n} and x, x̃ ∈ Rp,

µ‖x− x̃‖ ≤ ‖∇fi(x)−∇fi(x̃)‖ ≤ L‖x− x̃‖. (20)

Thus, each function fi is strongly convex with parameter µ and has
Lipschitz continuous gradients with parameter L. We note that while
in some machine learning applications, the loss functions used are not
strongly convex, e.g. logistic regression, they can typically be made
strongly convex by adding a regularization term to the objective function.
Our second assumption is that the component Hessians are also Lips-
chitz continuous. This assumption is commonly made to prove quadratic
convergence of Newton’s method [28] and superlinear convergence of
quasi-Newton methods [20–22].

Assumption 2 There exists positive constant 0 < L̃ such that, for all i,

‖∇2fi(x)−∇2fi(y)‖ ≤ L̃‖x− y‖. (21)

We proceed in our analysis of the convergence properties of IQN, first
by establishing a local linear convergence rate, then demonstrating some
limit properties of the Hessian approximations and finally by showing

that an improved superlinear convergence rate of the sequence of residu-
als can be obtained. We consider the stepsize ηt = 1 in our analysis since
we focus on local convergence of the proposed IQN method.

To start the analysis, first in the following lemma we show that the
residual ‖xt+1 − x∗‖ is bounded above by linear and quadratic terms of
the average error of the last n iterates.

Lemma 1 Consider the proposed Incremental Quasi-Newton method
(IQN) in (6)-(18). If the conditions in Assumption 1 hold, then the
sequence of iterates generated by IQN satisfies the inequality

‖xt+1 − x∗‖ (22)

≤ LΓt

n

n∑
i=1

∥∥zti − x∗
∥∥2 +

Γt

n

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
) (

zti − x∗
)∥∥ ,

where Γt := ‖((1/n)
∑n
i=1 B

t
i)
−1‖.

Lemma 1 shows that the residual ‖xt+1 − x∗‖ is upper bounded by
a sum of quadratic and linear terms of the last n residuals. This can even-
tually lead to a superlinear convergence rate by establishing the linear
term converges to zero at a fast rate, leaving us with an upper bound of
quadratic terms only. First, however, we establish a local linear conver-
gence rate in the proceeding theorem.

Theorem 1 Consider the proposed Incremental Quasi-Newton method
(IQN) in (6)-(18) and assume that Assumption 1 holds. Then, for each
r ∈ (0, 1), there are positive constants ε(r) and δ(r) such that for ‖x0−
x∗‖ ≤ ε(r) and ‖B0

i − ∇2fi(x
∗)‖ ≤ δ(r), for all i = 1, . . . , n, the

sequence of iterates generated by IQN satisfies

‖xt − x∗‖ ≤ r1+[ t−1
n ]+‖x0 − x∗‖, (23)

where [·]+ refers to the floor function. Moreover, the norms ‖Bt
i‖ and

‖(Bt
i)
−1‖ are uniformly bounded.

From the result in Theorem 1 that the norms ‖Bt
i‖ and ‖(Bt

i)
−1‖

are uniformly bounded, we obtain that Γt is uniformly bounded. More-
over, the result in (23) shows that the sequence of iterates xt converges
linearly to the optimal argument. As a result of this linear convergence
we obtain that the sequence of ‖xtn+i − x∗‖ is summable for all i, i.e.,∑∞
t=0 ‖x

tn+i − x∗‖ < ∞. The summability condition is necessary to
show that the iterates of BFGS method satisfy the the Dennis-Moré con-
dition in (5). Likewise, in the following proposition, we use the condition∑∞
t=0 ‖x

tn+i − x∗‖ < ∞ to show that a similar result holds for the it-
erates of the IQN method.

Proposition 1 Consider the proposed Incremental Quasi-Newton method
(IQN) in (6)-(18). Suppose that the conditions in Theorem 1 are valid
and Assumptions 1 and 2 hold. Then, for all i = 1, . . . , n we have

lim
t→∞

‖(Bt
i −∇2fi(x

∗))(zt+ni − zti)‖
‖zt+ni − zti‖

= 0. (24)

Proposition 1 is a necessary step towards a superlinear convergence
result because, similarly to the traditional BFGS analysis, it shows that
our Hessian approximations do converge to the Hessian over time along
the direction pointing towards the optimal point, thus giving us a method
that is locally close to Newton’s method.

In the following lemma, we use the result in (1) to show that the non-
quadratic terms ‖(Bt

i − ∇2fi(x
∗))(zti − x∗)‖ in (22) converge to zero

faster than ‖zti − x∗‖.

Lemma 2 Consider the proposed Incremental Quasi-Newton method
(IQN) in (6)-(18). Suppose that the conditions in Theorem 1 are valid and
Assumptions 1 and 2 hold. Then, the following holds for all i = 1, . . . , n

lim
t→∞

‖(Bt
i −∇2fi(x

∗))(zti − x∗)‖
‖zti − x∗‖ = 0. (25)
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Fig. 1: Convergence results of proposed IQN method in comparison to SAG, SAGA, and IAG. In (a) the left image, we present a sample convergence
path of the normalized error on the quadratic program with a small condition number. In (b) the center image, we show the convergence path for the
quadratic program with a large condition number. In (c) the right image, we present a sample convergence path for the logistic regression problem. In
all cases, IQN provides significant improvement over first order methods, with the difference increasing for larger condition number.

The result in Lemma 2 can thus be used in conjunction with Lemma
1 to show that the residual ‖xt+1−x∗‖ is bounded by a sum of quadratic
terms of previous residuals and a term that converges to zero at a fast
rate. This result leads us to the main result, namely the local superlinear
convergence of the sequence of residuals, stated in the following theorem.

Theorem 2 Consider the proposed Incremental Quasi-Newton method
(IQN) in (6)-(18). Suppose that the conditions in Theorem 1 are valid and
Assumptions 1 and 2 hold. Then, the sequence of residuals ‖xt − x∗‖
converges to 0 at a superlinear rate,

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖ = 0. (26)

The result in Theorem 2 shows that the sequence of iterates xt gener-
ated by the IQN method converges superlinealy in a local neighborhood
of the optimal argument x∗.

5. NUMERICAL RESULTS

We first provide numerical experiments for the application of IQN in
solving the least square problem, or equivalently a quadratic program,
in comparison against stochastic and incremental first order methods,
namely SAG [12], SAGA [14], and IAG [23]. Consider the problem

x∗ := argmin
x∈Rp

1

n

n∑
i=1

1

2
xTAix + bTi x, (27)

where Ai ∈ Rp×p is a positive definite matrix and bi ∈ Rp is a random
vector for all i. We select the matrices Ai := diag{ai} randomly for
both small (i.e. 102) and large (i.e. 104) condition numbers while bi
is chosen uniformly and randomly from the box [0, 103]p. We set the
variable dimension p = 10 and number of functions n = 1000. As
we are focusing on local convergence, we use a constant step size of
η = 1 for the proposed IQN method while choosing the largest step size
allowable by the other methods to converge.

In the left image of Figure 1 we present a representative simulation
of the convergence path of the normalized error ‖xt − x∗‖/‖x0 − x∗‖
for the quadratic program with small condition number. Step sizes of
η = 5 × 10−5, η = 10−4 and η = 10−6 were used for SAG, SAGA,
and IAG, respectively. These stepsizes are tuned to compare the best per-
formance of these methods with IQN. The proposed method reaches a
error of 10−10 after 10 passes through the data while SAGA achieves the
same error of 10−5 after 30 passes (SAG and IAG do not reach 10−5

after 40 passes). In the center image, we repeat the same simulation but
with larger condition number (SAG using η = 2 × 10−4 while others
remain the same). Observe that while the performance of IQN does not
degrade with larger condition number, the first order methods all suffer

large degradation. SAG, SAGA, and IAG reach after 40 passes a nor-
malized error of 6.5× 10−3, 5.5× 10−2, and 9.6× 10−1, respectively.
It can be seen that IQN significantly outperforms the first order method
for both condition number sizes, with the outperformance increasing for
larger condition number. This is expected as first order methods often do
not perform well for ill conditioned problems.

5.1. Logistic regression

We evaluate the performance of IQN on a logistic regression problem of
practical interest. A logistic regression learns a linear classifier x that
can predict the label of a data point vi ∈ {−1, 1} given a feature vector
ui ∈ Rp. In particular, we use IQN and the first order methods to classify
two digits from the MNIST handwritten digit database [29]. We evaluate
for a set of training samples the probability of a label v = 1 given an
image vector u as P (v = 1|u) = 1/(1 + exp(−uTx)). The classifier x
is chosen to the vector that maximizes that maximizes the log likelihood
over all n samples. Given n images ui with associated labels vi, the
optimization problem can be written as

x∗ := argmin
x∈Rp

λ

2
‖x‖2 +

1

n

n∑
i=1

log[1 + exp(−viuTi x)], (28)

where the first term is a regularization term parametrized by λ ≥ 0.
For our simulations we select from the MNIST dataset n = 1000 im-

ages with dimension p = 784 labelled as one of the digits “0” or “8”. The
regularization parameter is fixed to be λ = 1/n and step size of η = 0.01
was used for SAG, SAGA, and IAG. The convergence paths of the norm
of the gradient for all methods us shown in the right image in Figure 1.
Observe that IQN again outperforms the other stochastic and incremental
methods. After 60 passes through the data, IQN reaches a gradient mag-
nitude of 4.8 × 10−8, while the strongest performing first order method
(SAGA) reaches only a magnitude of 7.4× 10−5. Additionally, observe
that while the first order methods begin to level out after 60 passes, the
IQN method continues to descend. This demonstrates the effectiveness
of IQN on a practical machine learning problem with real world data.

6. CONCLUSIONS

We presented an incremental quasi-Newton BFGS method to solve a
large scale optimization problem, in which an aggregate cost function
is minimized while computing only a single gradient and Hessian ap-
proximation per iteration. The incremental quasi-Newton (IQN) method
iteratively updates approximations to the Hessian inverse to achieve a per-
formance comparable to that of incremental Newton methods. Analytical
results were established to show a local superlinear convergence rate and
superior numerical performance over first order stochastic and iterative
methods for two common machine learning problems.
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