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ABSTRACT
State filtering is a key problem in many signal processing ap-
plications. From a series of noisy measurement, one would
like to estimate the state of some dynamic system. Existing
techniques usually adopt a Gaussian noise assumption which
may result in a major degradation in performance when the
measurements are with the presence of outliers. A robust al-
gorithm immune to the presence of outliers is desirable. To
this end, a robust particle filter (PF) algorithm is proposed, in
which the heavier tailed Student’s t distributions are employed
together with the Gaussian distribution to model the measure-
ment noise. The effect of each model is automatically and
dynamically adjusted via a Bayesian model averaging mech-
anism. The validity of the proposed algorithm is evaluated by
illustrative simulations.

Index Terms— Bayesian, dynamic model averaging, ro-
bust particle filter, Student’s t distribution, outliers

1. INTRODUCTION

This paper focuses on nonlinear state filtering, a key prob-
lem in many signal processing applications. The aim here is
to derive a novel particle filter (PF) algorithm that is robust
towards outliers in the measurement noise. We regard filter-
ing with outliers as a model uncertainty problem, and address
it using a multiple model strategy (MMS). The MMS is a
generic approach to handle model uncertainty problems. For
example, in [1] and [2], the MMS is utilized to take account
of the issue of measurement model uncertainty and of state
evolution model uncertainty, respectively. Here, we employ
the MMS to take account of possible appearance of outliers
in the measurement, in the context of nonlinear state filtering.
Three candidate measurement models including one Gaussian
and two Student’s distribution models are employed together
to represent the measurement. By virtue of a model averag-
ing mechanism, the effect of each model is dynamically ad-
justed according to the posterior distribution of each model,

⋆Address correspondence to bins@ieee.org. This work was partly
supported by the National Natural Science Foundation (NSF) of China
(Nos. 61302158 and 61571238), the China Postdoctoral Science Founda-
tion (Nos. 2015M580455 and 2016T90483), the NSF of Jiangsu Province
(No. BK20130869), Scientific and Technological Support Project (Society)
of Jiangsu Province (No. BE2016776).

which is updated sequentially as we observe more data. The
method allows the heavier tailed Student’s t models to dom-
inate the Gaussian model when the outliers arrive. This is
done autonomously and dynamically within the PF algorith-
mic framework. The validity of our method is evaluated by
illustrative simulations.

2. PARTICLE FILTER

In this Section, we give a succinct description for the PF al-
gorithm. For more details, readers can refer to [3–5]. Let us
first consider a state space model:

xk = f(xk−1) + uk (1)
yk = h(xk) + nk, (2)

where xk ∈ Rdx and yk ∈ Rdy denote the target state vector
and the measurement at the kth time step, respectively; dx and
dy denote the corresponding dimensions. f and h denote the
nonlinear state evolution function and measurement function,
respectively. uk and nk represent independent identically dis-
tributed (i.i.d.) process and measurement noise sequence, re-
spectively. The probability density functions (pdfs) of uk and
nk, which are usually specified by the modeler, defines the
state transition prior density p(xk|xk−1) and the likelihood
function p(yk|xk), respectively.

The Bayesian state filtering problem consists of comput-
ing the a posteriori pdf of xk given y0:k = {yi}ki=0, denoted
by p(xk|y0:k) (or in short pk|k). Recursive solutions are more
preferable to batch mode methods; and, indeed pk|k can be
computed from pk−1|k−1 recursively as follows

pk|k =
p(yk|xk)

∫
p(xk|xk−1)pk−1|k−1dxk−1

p(yk|y0:k−1)
. (3)

The PF algorithm is an approximate solution to Eqn.(3)
based on the sequential application of importance sampling
(IS) techniques. Suppose that, at time step k − 1, we have
a discrete approximation of p(x0:k−1|y0:k−1) given by a set
of weighted samples {xi

0:k−1, ω
i
k−1}Ni=1, in which xi

0:k−1 ∼
q(x0:k−1|y0:k−1), ωi

k−1 ∝ p(x0:k−1|y0:k−1)/q(x0:k−1|y0:k−1),∑N
i=1 ω

i
k−1 = 1. At time k, the ith trajectory is first extended

by a particle x̂i
k sampled from an importance distribution
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q(xk|xk−1, y0:k) and then weighted by

ωi
k ∝ ωi

k−1p(x̂
i
k|xi

k−1)p(yk|x̂i
k)/q(x̂

i
k|xi

k−1, y0:k). (4)

It is well known that the above algorithm suffers from particle
degeneracy when it is applied sequentially [5]. Precisely, af-
ter some iterations only few particles have a non null positive
weight. A common practice to get around of this problem is
to use after the weighting step a resampling step meant to dis-
card the particles with low weights and duplicate those with
high weights. Several resampling techniques have been pro-
posed, see e.g. [6–8]. A main scheme for an iteration of the
PF algorithm can be summarized as follows. Starting from
{xi

k−1, ω
i
k−1}Ni=1:

• Sampling step. Sample x̂i
k ∼ q(xk|xi

k−1, y0:k), for all
i, 1 ≤ i ≤ N ;

• Weighting step. Set ωi
k using Eqn.(4) for all i, 1 ≤

i ≤ N , and normalize these weights to guarantee that∑N
i=1 ω

i
k = 1;

• Resampling step. Sample xi
k ∼

∑N
j=1 ω

j
kδx̂j

k
, set ωi

k =

1/N , for all i, 1 ≤ i ≤ N . δx denotes the Dirac-delta
function located at x.

3. THE PROPOSED ROBUST PARTICLE FILTER

Here the measurement noise nk in Eqn.(2) is modeled by M
candidate models together. Let Hk = m denote the event
that the mth model, Mm, is the best one for use at time k.
Based on the Bayesian model averaging strategy [9–11], the
posterior pdf under this multiple model setting is calculated
as follows

pk|k =
M∑

m=1

pm,k|kπm,k|k, (5)

where pm,k|k , p(xk|Hk = m, y0:k) and πm,k|k , p(Hk =
m|y0:k). A recursive solution to compute Eqn.(5) is of partic-
ular interest here. Assume that at time k− 1, we have at hand
πm,k−1|k−1, for all m, 1 ≤ m ≤ M , and a weighted sample
set, {xi

0:k−1, ω
i
k−1}, which satisfies

pk−1|k−1 ≃
N∑
i=1

ωi
k−1δxi

k−1
. (6)

At time k, the ith trajectory is first extended by a particle
x̂i
k sampled from an importance distribution q(xk|xk−1, y0:k)

and then weighted by a weight

ωi
m,k ∝ ωi

k−1p(x̂
i
k|xi

k−1)pm(yk|x̂i
k)/q(x̂

i
k|xi

k−1, y0:k), (7)

under the hypothesis Hk = m, where pm(yk|xk) denotes the
likelihood function associated with Mm. According to the IS
principle, we have

pm,k|k ≃
N∑
i=1

ωi
m,kδx̂i

k
. (8)

Now let us consider, given πm,k−1|k−1, how to derive out
πm,k|k. First we specify a model transition process in term
of forgetting [2], in order to predict the model indicator H.
Let α, 0 < α < 1, denote the forgetting factor. Given
πm,k−1|k−1, we have

πm,k|k−1 =
πα
m,k−1|k−1∑M

m=1 π
α
m,k−1|k−1

, (9)

where πm,k|k−1 , p(Hk = m|y0:k−1). Then, employing
Bayes’ rule we have

πm,k|k =
πm,k|k−1pm(yk|y0:k−1)∑M

m=1 πm,k|k−1pm(yk|y0:k−1)
, (10)

where pm(yk|y0:k−1) is the marginal likelihood of Mm at
time k, defined to be

pm(yk|y0:k−1) =

∫
pm(yk|xk)p(xk|y0:k−1)dxk. (11)

Here the state transition prior is adopted as the importance
distribution, namely q(xk|xk−1, y0:k) = p(xk|xk−1). Ac-
cordingly we have p(xk|y0:k−1) ≃

∑N
i=1 ω

i
k−1δx̂i

k
. Then the

integral in Eqn.(11) can be approximated as follows

pm(yk|y0:k−1) ≃
N∑
i=1

ωi
k−1pm(yk|x̂i

k). (12)

To summarize, one iteration of the proposed robust particle
filter (RPF) is as follows. Starting from {xi

k−1, ω
i
k−1}Ni=1 and

πm,k−1|k−1, for all m, 1 ≤ m ≤ M :

• Sampling step. Sample x̂i
k ∼ q(xk|xi

k−1, y0:k), for all
i, 1 ≤ i ≤ N ;

• Weighting step. Set ωi
m,k using Eqn.(7) for all i, 1 ≤

i ≤ N , and normalize these weights to guarantee that∑N
i=1 ω

i
m,k = 1, for all m, 1 ≤ m ≤ M ;

• Model Averaging step. Compute the posterior pdf of
the model indicator, πm,k|k, using Eqns.(9)-(12).

• Resampling step. Sample xi
k ∼

∑N
j=1 ω

j
kδx̂j

k
, in which

ωj
k =

∑M
m=1 πm,k|kω

j
m,k; Set ωi

k = 1/N , for all i,
1 ≤ i ≤ N .

The presented RPF uses three measurement noise models, in-
cluding two Student’s t distribution models and one Gaussian
model, based on which the likelihood functions pm(yk|xk),
m = 1, 2, 3, are defined. All distribution models are zero
mean with the a fixed covariance Σ. The involved two Stu-
dent’s t models discriminate with each other by the parame-
ter, degrees of freedom (DoF). The DoF values under use are
3 and 50, corresponding to an extremely and an intermediate-
level heavier tailed distributions, respectively. Suppose that x
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is a d dimensional random variable that follows the multivari-
ate Student’s t distribution, denoted by S(·|µ,Σ, v), where µ
denotes the mean and v ∈ (0,∞] is the DoF. Then the density
function of x is:

S(x|µ,Σ, v) =
Γ( v+d

2 )|Σ|−0.5

(πv)0.5dΓ(v2 ){1 +Md(x, µ,Σ)/v}0.5(v+d)
,

(13)
where

Md(x, µ,Σ) = (x− µ)TΣ−1(x− µ) (14)

denotes the Mahalanobis squared distance from x to µ with
respect to Σ, A−1 denotes the inverse of A and Γ(·) denotes
the gamma function.

4. SIMULATIONS

We evaluated the validity of the proposed algorithm using the
time-series experiment presented in [12]. The time-series is
generated by the following state evolution model

xk+1 = 1 + sin(0.04π × (k + 1)) + 0.5xk + uk, (15)

where uk is a Gamma(3,2) random variable modeling the pro-
cess noise. The observation model is

yk =

{
0.2x2

k + nk, k ≤ 30
0.2xk − 2 + nk, k > 30

(16)

The goal is to estimate the underlying clean state sequence xk

online based on the noisy observations, yk, for k = 1, . . . , 60.

4.1. Case I: filtering without the presence of outliers

First we considered the case without outliers. In this case the
measurement noise, nk, was drawn from a zero-mean Gaus-
sian distribution. A few different PF algorithms were used
for performance comparison. The experiment was repeated
30 times with random re-initialization for each run. All of
the PFs used 200 particles and the residual resampling [8].
The forgetting factor of RPF α takes a value of 0.9. The
performance of the different filters is summarized in Table
1, wherein the EKPF and UPF denote the PFs which employ
the extended Kalman filter and the unscented Kalman filter to
generate the importance distribution, respectively. The table
shows execution time (in seconds), the means and variances
of the mean-square-error (MSE) of the state estimates. All the
reported computing times are based on a computer equipped
with an Intel i5-3210M 2.50 GHz processor with one core.
They do not involve any parallel processing. The result show
that the proposed RPF is more accurate than the other com-
petitor algorithms in the sense of MSE, with less execution
time than the UPFs.

Algorithm Time MSE
mean var

PF: Generic 1.561 0.350 0.056
PF: MCMC move step 3.275 0.371 0.047

EKPF 2.958 0.280 0.015
EKPF: MCMC move step 7.033 0.278 0.013

UPF 9.095 0.055 0.008
UPF: MCMC move step 19.735 0.052 0.008

the proposed RPF 5.509 0.018 0.0001

Table 1: Execution time (in seconds), Mean and variance of
the MSE calculated over 30 independent runs for Case I.

Algorithm MSE
mean var

PF: Generic 0.533 0.040
PF: MCMC move step 0.523 0.039

EKPF 22.663 0.343
EKPF: MCMC move step 22.668 0.358

UPF 19.804 0.289
UPF: MCMC move step 19.808 0.274

the proposed RPF 0.357 0.010

Table 2: Mean and variance of the MSE calculated over 30
independent runs for Case II.

4.2. Case II: filtering with the presence of outliers

Next we designed a simulation case that involves outliers. The
setting for the experiment time series was the same as Case I,
except that several measurements at some time steps are re-
placed by outliers. The time steps associated with the pres-
ence of outliers are k = 7, 8, 9, 20, 37, 38, 39, 50. For typ-
ical measurements, their associated measurement noise was
drawn from a zero-mean Gaussian distribution the same as
for Case I. For outliers, the item nk in Eqn.(16) was drawn
randomly from a uniform distribution between 40 and 50. All
the considered algorithms were set to be blind to the above
information on the outliers. The other settings for the exper-
iment were the same as for Case I. The performance of the
different filters is summarized in Table 2, which shows that
the presented RPF method provides the most accurate online
state estimation. For this case, the EKPFs and UPFs perform
much worse than the other filters. We argue that it is due to the
fact that both EKPFs and UPFs utilize the measurement in-
formation to build up the importance distribution, while, they
will improperly take outliers as regular measurements upon
the arrival of outliers and thus make the resulting importance
distribution inefficient and misleading.

4.3. Further evaluations of RPF

First we evaluated the sensitivity of the RPF’s performance
with respect to the forgetting factor α. We considered α val-
ues 0.1, 0.3, 0.5, 0.7 and 0.9. For each value, we ran the RPF
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Fig. 1: Mean of the MSE calculated over 30 independent runs,
in case of different α values, for both Case I and II.

algorithm 30 times for both Case I and II and calculated the
corresponding mean of MSE. The result is depicted in Fig.1,
which shows that the performance of the presented RPF algo-
rithm is not very sensitive to the selected values of α, for both
Case I and II.

Next we fixed the value of α to be 0.1, and recorded the
averaged posterior probability of each candidate measure-
ment model at each time step over 30 times of experiments
for both Case I and Case II. The result is plotted in Fig.2.
It is shown that, for both cases, the Student’s t (v=3) model
always dominates the other models. The curves have no
obvious patterns for Case I; but have an obvious pattern for
Case II, that is, the posterior probability of the Student’s t
(v=3) model increases along with the appearance of outliers.
Specifically, once an outlier appears (corresponding to time
steps k = 7, 8, 9, 20, 37, 38, 39, 50), the posterior probability
of the Student’s t (v=3) model increases suddenly to a value
close to 1; meanwhile, the posterior probabilities of the other
two models decrease to 0 correspondingly.

Observing that the posterior probability of the Student’s t
(v=3) model is always much bigger than the others, we won-
dered if a PF algorithm which only employs the Student’s t
(v=3) model can produce the similar performance as the pre-
sented RPF algorithm. We set α = 0.9 and repeated the ex-
periment of running the single Student’s t (v=3) model based
PF in the same way as described before for Case I and II.
The resulting mean and variance of the MSE are presented
in Table 3. In contrast with the performance of RPF as pre-
sented in Tables 1 and 2, we see that the single model based
PF performs similarly as the presented RPF for case II, while,
it loses in terms of MSE against RPF for case I.

5. CONCLUSIONS

In this paper, we propose a multi-model based PF method,
which is robust against the presence of outliers in the mea-
surements. In the proposed RPF method, the heavier-tailed
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Fig. 2: Averaged posterior probability of candidate models
outputted by the proposed RPF method. The top and bottom
sub-figures correspond to Case I and II, respectively.

MSE
mean var

Case I 0.060 0.012
Case II 0.366 0.006

Table 3: Mean and variance of the MSE calculated over 30
independent runs of the Student’s t (v=3) model based PF.

Student’s t models are employed together with the conven-
tionally used Gaussian model to represent the measurement
noise. A Bayesian model averaging strategy is adopted to
handle the issue of model uncertainty. It is shown that the
proposed method is able to dynamically adjust the effect of
each candidate model in an automatic and theoretically sound
manner. The validity of this method is evaluated via illustra-
tive simulations. Empirical results show that the RPF method
performs strikingly better than several existent PFs for all
cases under consideration. Future work lies in adapting the
presented RPF algorithm to deal with real-life problems, e.g.,
sonar/radar target tracking [13], in which the behaviors of the
outliers may be more complex.
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