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ABSTRACT

We develop a robust method for the accurate reconstruction of non-
bandlimited finite rate of innovation signals composed of finite num-
ber of Diracs. For the recovery of parameters of K Diracs defining
the signal, the proposed method requires more than (K +

√
K )2

samples of the signal band-limited in harmonic domain such that the
spherical harmonic transform can be computed using the samples.
In comparison with the existing methods, the proposed method is
robust in a sense that it does not require all Diracs to have distinct co-
latitude parameter. We first estimate the N number of Diracs which
do not have distinct colatitude parameter. Once N is determined,

the proposed method requires, at most, N2+N
2

+ 1 unique and in-
telligently chosen rotations of the signal to recover all parameters
accurately. We also provide illustrations to demonstrate the accurate
reconstruction using the proposed method.

Index Terms— Finite rate of innovation, recovery of Diracs,
spherical harmonics, non-bandlimited signals, unit sphere

1. INTRODUCTION

In many applications, signals are inherently defined on the sphere.
These applications appear in wireless communication [1], cosmic
microwave background [2], astrophysics [3], acoustics [4], planetary
science [5], diffusion magnetic resonance imaging (dMRI) [6, 7].
To support accurate signal reconstruction and harmonic analysis
in these application, many sampling schemes have been devised
for band-limited signals (e.g., [8] and references therein) as these
schemes enable the accurate computation of spherical harmonic
transform (SHT), which is the well-known counterpart of the Fourier
transform. However, these sampling schemes do not support accu-
rate representation or reconstruction of non-bandlimited signals,
such as, fiber orientations in diffusion weighted magnetic resonance
imaging and microphone locations in spherical microphone array.
In this work, we consider the problem of robust and accurate re-
construction of a class of non-bandlimited signals which have finite
degree of freedom called the finite rate of innovation (FRI). Signals
with FRI consist of finite number of Diracs distributed over the
whole sphere.

In Euclidean domain, a sampling scheme has been proposed in
[9] to sample signals with FRI based on the formulation of anni-
hilating filter. This concept is adopted in [10] recently for the de-
velopment of sampling scheme on the sphere to sample signals with
FRI, where it has been demonstrated that the signals with FRI can be
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accurately reconstructed, that is, parameters of Diracs can be recov-
ered, by first band-limiting the signal and then taking finite number
of samples over the grid defined by the sampling scheme that support
accurate computation of SHT. The proposed method (algorithm) re-
quires at least 4K2 spherical samples to reconstruct a stream of K
Diracs, which has 3K degrees of freedom, on the sphere. More re-
cently a sampling scheme has been proposed in [7] where the re-
quired number of spherical samples are reduced to (K +

√
K)2

samples for accurate recovery of the parameters of K Diracs on the
sphere. However, the proposed method has a limitation that it re-
quires that no two Diracs on the sphere share the same colatitude
and no Diracs are placed on either of the poles (θ = 0 and θ = π, θ
is formally defined in section 2.1).

In this work, we develop a method to accurately reconstruct a
signal composed of K Diracs on the sphere using (K+

√
K)2 sam-

ples of the band-limited signal taken over optimal dimensionality
sampling scheme [8]. The proposed method is based on intelligent
choice of series of rotations to eliminate the limitation of the ex-
isting methods. Consequently, the proposed method is robust in a
sense that it accurately recovers parameters of the signal and conse-
quently enable accurate reconstruction. We first review the mathe-
matical background and formulate the problem in Section 2. Exist-
ing method is reviewed in Section 3 and proposed developments are
made in Section 4, where we also provide illustrations to corroborate
the theoretical developments. Finally, concluding remarks are made
in Section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Mathematical Background – Signals on the Sphere

The unit sphere (2-sphere) is defined as S2 = {û ∈ R
3 : |û|2 = 1},

where | · |2 denotes the Euclidean norm. The unit vector û is param-
eterized in terms of colatitude angle θ ∈ [0, π] and longitude angle

φ ∈ [0, 2π) as û ≡ û(θ, φ) � (sin θ cosφ, sin θ sinφ, cos θ)′.
Functions on the 2-sphere form a Hilbert space L2(S2) equipped
with the inner product

〈f, g〉 �
∫
S2

f(û) g(û) ds(û), (1)

between two functions f and g defined on S
2. Here ds(û) =

sin θ dθ dφ is the differential area element on S
2, (·) denotes the

complex conjugate and the integration is carried over the entire

sphere. The inner product in (1) induces a norm ‖f‖ � 〈f, f〉1/2.
Functions with finite induced norm are defined as signals on the
sphere.
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The spherical harmonic (SH) functions (or spherical harmonics),
denoted by Y m

� (û) for integer degree � ≥ 0 and integer order |m| ≤
�, form a complete set of basis functions for L2(S2) [11]. Here | · |
denotes the absolute value operator. The SH coefficient (f)m� of
degree � ≥ 0 and order |m| < � is defined as (f)m� = 〈f, Y m

� 〉 [11].
The function f is said to be band-limited at degree L if (f)m� =
0, ∀ � ≥ L, |m| ≤ �.

2.2. Problem under Consideration

We consider a signal as a weighted sum of K Diracs on the sphere
given by

f(û) =
K∑

k=1

αk δ(û, ûk), (2)

where αk is the complex weight and ûk ≡ û(θk, φk) represents the
location of k-th Dirac on the sphere. Here δ(û, ûk) is the spherical
Dirac delta function which may be identified by its action on func-
tions as 〈f, δ(· , ûk)〉 = f(ûk). The problem under consideration is
to recover the parameters of the signal, that is complex weights αk

and locations ûk for k = 1, 2, . . . ,K provided the samples of the
signal f band-limited in harmonic domain.

In [7], an algorithm has been proposed for the recovery of pa-
rameters of f by band-limiting the signal at degree1 L = �K+

√
K�,

taking L2 samples [8] of the band-limited signal and employing the
annihilating filter method [9]. The proposed algorithm works accu-
rately provided that the colatitude θk for each Dirac is distinct and
θk /∈ {0, π}. To resolve this problem, a random rotation is applied
to the coordinate system prior to reconstruction. However, this does
not resolve the problem completely. There is a possibility that the
rotated Diracs do not have distinct colatitude θk or θk ∈ {0, π}. In
this work, we resolve this problem and present a method to recover
the parameters of the signal having Diracs with same colatitudes.

3. RECONSTRUCTION OF SIGNALS WITH FRI

Here, we review an algorithm presented [7] for the recovery of pa-
rameters of f . The proposed algorithms involves band-limiting of
the signal at degree L = �K +

√
K�, taking L2 samples [8] of the

band-limited signal and employing the annihilating filter method [9].
We first take L2 samples of the signal f band-limited at L using

an optimal-dimensionality sampling scheme [8] which support the
accurate computation of SH coefficients (f)m� ∀ � < L, |m| ≤ � [8].
By employing sifting property of Dirac delta function, the represen-
tation of SH function Y m

� (θ, φ) = Y m
� (θ, 0)eimφ and noting that

Y m
� (θ, 0) is a product of (sin θ)|m| and a polynomial in cos θ of

degree �− |m|, we can express SH coefficient (f)m� = 〈f, Y m
� 〉 as

(f)m� =

�−|m|∑
p=0

cp�mdpm, (3)

where

dpm =
K∑

k=1

(αkukm)xp
k (4)

with ukm = (sin θk)
|m|e−imφk and xk = cos θk and cp�m denotes

the coefficient associated with (cos θ)p of the polynomial defining

1Here �·� denotes the integer ceiling function.

the SH Y m
� (θ, 0). For a signal band-limited at L, there are L− |m|

SH coefficients of order m and degrees |m| ≤ � < L, which can
be used to recover dpm for each m and 0 ≤ p < L − |m| using
inversion of (3).

Since dpm is a linear combination of K powers of xk, the an-
nihilating filter technique [9] has been adopted in [7] to estimate
xk = cos θk, k = 1, 2, . . . ,K. This estimation involves the con-
struction of annihilating matrix Z given by

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dL−1,0 dL−2,0 · · · dL−K−1,0

dL−2,0 dL−3,0 · · · dL−K−2,0

...
...

. . .
...

dK,0 dK−1,0 · · · d0,0
dL−2,1 dL−3,1 · · · dL−K−2,1

dL−3,1 dL−4,1 · · · dL−K−3,1

...
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

followed by the computation of right singular vector v of Z and
determination of θk, k = 1, 2, . . . ,K by taking arccos of the roots
of v. As we are required to estimate K roots of v, Z needs to have
at least K rows, which is ensured by the choice of band-limit taken
as L ≥ K +

√
K. We review the recovery of the longitude φk and

amplitude αk later in the paper.

4. ROBUSTNESS IN RECONSTRUCTION

The reconstruction of signals with finite rate of innovation presented
in previous section is based on the assumption that the Diracs do not
have the same colatitude. In practice, there is a possibility that the
Diracs on the sphere defining the signal share same colatitude. Here
we devise an algorithm for the recovery of signal parameters when
Diracs have same colatitude.

We assume that there are N out of K Diracs which do not have
unique colatitude parameter θk. In other words, the signal f , given
in (2), has K Diracs placed on K −N iso-latitude rings. Since N is
not known in practice, it can be determined using following Lemma.

Lemma 1. If the signal f consist of K Diracs, given in (2), has N
non-unique colatitude parameter θk, the null-space of the annihilat-
ing matrix Z, given in (5) is N dimensional.

4.1. Determining the K −N Iso-latitude Rings

As a consequence of Lemma 1, we do not get a unique solution to the
annihilating matrix problem. However, we can determine unique θk
for k = 1, 2, . . . ,K −N using Z. Following Lemma 1, the matrix
Z has N dimensional null-space, denoted by N (Z). Using N vec-
tors that span N (Z), we can determine unique colatitude parameters
θk, k = 1, 2, . . . ,K −N using the following Lemma.

Lemma 2. If any vector v in the null space of the matrix Z of rank
K − N represents the coefficients of polynomial of degree K, the
polynomial associated with any vector v has same K −N roots.

Proof. For any vector v ∈ N (Z), we have

K∑
q=0

dp−q,mvq = 0, (6)

for any p = K,K + 1, . . . L − 1 and |m| < L. For N repeated
colatitudes θk, the summation in the formulation of dpm, given in
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(4), includes K −N terms, that is, we can express dpm as

dpm =

K−N∑
k=1

bkx
p
k, (7)

for unique xk = cos θk, k = 1, 2, . . .K −N , which upon substitu-
tion in (6) gives

K−N∑
k=1

bk x
p
k

K∑
q=0

vq x
−q
k

︸ ︷︷ ︸
V (xk)

= 0, (8)

which implies V (xk) = 0 for each unique xk = cos θk, k =
1, 2, . . .K−N and is equivalent to the statement of the theorem.

Since each polynomial associated with any vector in the N di-
mensional null space has same K−N roots, we can uniquely deter-
mine K − N colatitudes representing location of iso-latitude rings
where all K Diracs are placed.

4.2. Using the Information of K − N Iso-latitude Rings to De-
termine Rotation Parameters

Having information about K −N unique iso-latitude rings, we here
devise a method to determine the remaining N repeated colatitudes
correctly. The K Diracs representing the signal f are distributed on
these K − N rings such that each ring contains at least one Dirac.
Our method is based on rotating the signal intelligently such that the
rotated signal do not have Diracs with same colatitude.

Using the known colatitudes, we want to estimate a rotation of
the signal f which ensures that no two Diracs have the same colati-
tude θk after the rotation is applied. A possible solution is to rotate
f around y−axis by β given by

2β < min
i,j=[1,K−N ], i �=j

(
θi, π − θj , |θi − θj |

)
, (9)

which ensures that the rings do not overlap after the rotation is
applied. This also ensures that there is no Dirac at either of the
poles (θk = 0 and θk = π). This solution does not work if two
Diracs residing on a single ring are symmetric with respect to x−
axis, then even after the rotation around y − axis is applied there
colatitude will be the same. Furthermore, the rotation around z-
axis prior or after the rotation around y-axis may not eliminate the
possibility of Diracs having same colatitude parameter. We here
devise a method where we apply a series of rotations around z-axis
prior to the rotation around y-axis to enable the accurate and robust
determination of all K colatitudes. Let fn be the signal obtained by
rotating f around z-axis by2 γn ∈ (0, π) and then rotating around
y-axis by β given in (9). The SH coefficients of the rotated signal
fn can be obtained as [11]

(fn)
m
� =

�∑
m′=−�

dmm′
� (β)e−im′γn(f)m

′
� , (10)

where dm,m′
� denotes the Wigner-d function of degree � and orders

m,m′ [11].
Using the SH coefficients of the rotated signal, we employ (3) to

construct Z given in (5) for the rotated signal. We keep on applying

2We choose γn ∈ (0, π) as rotation in this range can resolve all pair of
Diracs with same colatitudes and longitudes that are symmetric with respect
to x-axis.

rotations by choosing random, but unique, γn and β given by (9)
until the rank of the matrix Z is K. Once we determine such a
rotation, all K colatitude parameters of the rotated signal can be
computed accurately. We use the following Lemma to determine the
total number of rotations required for the accurate recovery of all K
colatitudes.

Lemma 3. For a signal having K Diracs placed on K −N isolat-
itude rings, we need to apply at most N2+N

2
+ 1 different rotations

on the signal to find a rotation for which the matrix Z given in (5)
has rank K.

Proof. Since we can have N + 1 Diracs with same colatitude pa-
rameter in the worst case, there are at most

(
N+1

2

)
pair of Diracs

with longitude parameters symmetric around x-axis. Consequently,

we need at most N2+N
2

+ 1 rotations around z-axis followed by the
rotation around y-axis by β given in (9) to obtain the matrix Z of
rank K.

4.3. Recovery of Parameters

Once the rotation parameters β and γn are determined such that the
Z given in (5) for the rotated signal has rank K, we recover K colat-
itude parameters, denoted by θ̃k, k = 1, 2, . . . ,K of the rotated sig-
nal, by first computing the right singular vector v of Z and then tak-
ing arccos of the roots of v. For the recovery of longitudes, denoted
by φ̃k of the rotated signal and amplitudes αk for k = 1, 2, . . . ,K,
we employ the formulation in (3) and (4) to express the SH coeffi-
cient of degree � and orders m = 0, 1 as

(fn)
0
� =

K∑
k=1

αk

�∑
p=0

cp�0(cos θ̃k)
p, (11)

(fn)
1
� =

K∑
k=1

αk sin θke
−iφk︸ ︷︷ ︸

gk

�∑
p=0

cp�0(cos θ̃k)
p, (12)

which is computed using (10) for all � < L. Since there are L >
K +

√
K SH coefficient (fn)

0
� of order 0 and the colatitudes θ̃k of

Diracs for the rotated signal have been computed, we invert (11) to
recover amplitudes αk for all k = 1, 2, . . . ,K. Furthermore, (12)
is inverted to recover all gk, k = 1, 2, . . . ,K, which can be used to
recover longitudes of the rotated signal as

φk = −Angle

(
gk
αk

)
, (13)

where Angle(·) returns the phase of the complex number. Now we

have recovered the colatitudes θ̃k, longitudes φ̃k and amplitudes αk

for all k = 1, 2, . . . ,K. Using ŵk � ŵk(θ̃k, φ̃k), which repre-
sents the location of the k-th Dirac of the rotated signal fn, we can
determine ûk(θk, φk) as

ûk = R−1ŵk, (14)

where R ∈ R
3×3 is the rotation matrix corresponding to the rotation

operator that rotates the signal first around z-axis by γn and then
around y-axis by β [11].

4026



4.4. Illustrations

Here we provide examples to demonstrate the proposed method for
the reconstruction of signals with FRI. We consider a signal f of the
form given in (2) with K = 14 and N = 5, that is, we take 14
Diracs placed on 9 rings. We fist take random parameters by choos-
ing αk, k = 1, 2, . . . ,K with real and imaginary parts uniformly
distributed in [0, 1], θk, k = 1, 2, . . . ,K −N uniformly distributed
in [0, π] and φk, k = 1, 2, . . . ,K − N uniformly distributed in
[0, 2π). The remaining N = 5 Diracs are placed on first five rings
symmetric around x-axis, that is, we choose θK−N+k = θk and
φK−N+k = 2π − φk for k = 1, 2, . . . , N . We also add random
ωk ∈ [0, 2π) to each φk. Now we generate the SH coefficient (f)m�
for � < K +

√
K and |m| < � using (3). The signal obtained in

spatial domain using these SH coefficients is shown in Fig. 1, which
represents the signal f band-limited at L = �K +

√
K�. Using

SH coefficients (f)m� , we recover the parameters using the proposed
method. We analyse the rank of the matrix Z is less than K for
signal f and the rotated signal fn obtained by choosing rotation pa-
rameter β given in (9) and γn = ωn for n = 1, 2, . . . , 6. As ex-
pected, the rank is K − 1 for n = 1, 2, . . . , 5 and 14 for n = 6
when there are no Diracs in the signal having same colatitudes. For
the case when Z is of rank K, we recover the parameters using the
proposed method with maximum error between the recovered pa-
rameters and original parameters on the order of 10−6 illustrating
that the proposed method enables the accurate recovery of parame-
ters. We also analyse the recovery of parameters of the signal with
randomly placed K = 3, 4, . . . , 14 number of Diracs. We again
randomly generate parameters and apply the proposed reconstruc-
tion method to recover the parameters. We repeat the experiment
10 times and compute the average value for the errors Eθ , Eφ and
Eα between recovered and original colatitudes, longitudes and am-
plitudes respectively, which are plotted in Fig. 2 in dB scale, where
it is evident that the proposed method allows sufficiently accurate
recovery of parameters and consequently accurate reconstruction of
signals with FRI. It can also be noted that the errors grow with the
increase in the K number of Diracs. This is due to the decrease in
the the minimum spacing between Diracs with the increase in K that
results in the ill-conditioning of the matrix Z and consequently com-
putation of colatitudes. More rigorous analysis of the performance
of proposed method and the application to problems in acoustics and
dMRI are subjects of future work.

5. CONCLUSIONS

We have proposed a method for robust and accurate recovery of pa-
rameters of the non-bandlimited signal with finite rate of innovation.
The proposed method eliminates the limitation of the existing meth-
ods which require Diracs defining the signal to have distinct colati-
tude parameter. For a signal defined as a weighted sum of K Diracs,
the proposed method first estimates N number of Diracs which do
not have distinct colatitudes. Once N is estimated, we determine the
colatitude parameter for K−N Diracs, using which, we intelligently

apply a sequence of N2+N
2

+ 1 rotations on the signal such that the
colatitude parameter for the remaining K Diracs is estimated. Once
colatitude parameter is determined for all Diracs, we recover the re-
maining parameters. We have also provided illustrations to support
the developments and demonstrate that the proposed method enables
accurate recovery of parameters.

Fig. 1: The band-limited representation of the signal f obtained by
first generating SH coefficients using (3) and then expanding the co-
efficients in SH basis.
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Fig. 2: Errors Eθ , Eφ and Eα between recovered and original colat-
itudes, longitudes and amplitudes respectively for different values of
K (number of Diracs).
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