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ABSTRACT
We study online robust matrix completion on graphs. At each iter-
ation a vector with some entries missing is revealed and our goal is
to reconstruct it by identifying the underlying low-dimensional sub-
space from which the vectors are drawn. We assume there is an un-
derlying graph structure to the data, that is, the components of each
vector correspond to nodes of a certain known and fixed graph, and
their values are related accordingly. We propose an algorithm that
exploits the graph to reconstruct the incomplete data, in the scenario
where there is outlier noise. The theoretical properties of the algo-
rithms are studied and numerical experiments using both synthetic
and real world datasets verify the improved performance of the pro-
posed technique compared to other state of the art algorithms.

Index Terms— Matrix Completion, Graphs, Robust Subspace
Tracking.

1. INTRODUCTION

Modern technologies have produced a vast array of data-generating
devices (e.g., smart phones, cameras, sensors) and processes (e.g.,
web searches, surveys, social media interaction). Frequently, it is
known or conjectured that there is an underlying structure to the
data, and further, that this structure reflects some simpler underlying
process. To make this more concrete, consider the notion of sparsity
in a movie-rating database such as used by Netflix. If the rows of
the ratings matrix represent movies and the columns people, then it
is reasonable to suppose, and indeed has been found to be the case
([1, 2]), that the ratings matrix is of low rank. This would reflect that
ratings vectors really “live” in a small subspace of the ambient space
they are generated in. Consequently, understanding this subspace
better allows the exploitation of the data, for example, through more
tightly focused marketing. On the other hand, the matrix will be in-
complete, since any given user will rate only a very small subset of
all the movies available. Thus, one would desire completion of the
matrix: a low-rank matrix with sufficiently many observed entries
can be exactly reconstructed, and in the last decade, this has been
a very active area of research in the signal processing and machine
learning communities. However, low-dimensional subspaces are not
the only form of structure; indeed, there can also be an underly-
ing graphical structure that represents connections/relations between
entities. For example, one may generate a graph where movies are
nodes and and two movies are linked if they both star a famous actor.
Such a structure is sometimes easy to discover, and it immediately
begs the question of how (if at all) it can be used to help fill in the
missing entries of the matrix.
1.1. RELATED WORK

The problem of matrix completion is a well studied one and several
solutions have been proposed during the past years, see for example

[3, 4, 5]. The online setup has its roots in the so–called subspace
tracking problem, e.g., [6], in which the columns of a matrix are re-
vealed sequentially one per iteration step and the goal is the identifi-
cation of the underlying subspace. Extensions of these works, which
deal with the presence of missing entries and/or outliers have been
studied in [7, 8, 9, 10, 11, 12, 13, 14]. The batch version of the ma-
trix completion on graphs problem was originally presented in [15]
and extended to its robust version, which deals with the presence of
outliers, in [16].

1.2. OUR CONTRIBUTION

In this work, we extend the idea presented in [15] and we propose
a robust online algorithm for matrix completion exploiting graph in-
formation. Here, we propose an online solution, i.e., the columns
of the matrix appear and are processed sequentially, one per itera-
tion step. To that direction, at each iteration step we define a proper
cost function and we minimize it to produce the updated estimates.
Furthermore, we study the case where there is outlier noise, which
corrupts a small subset of the observed vector. We propose a ro-
bust solution, which estimates the outlier noise and cleans the data
before updating the quantities of interest. To the best of our knowl-
edge, this is the first work dealing with the online matrix completion
on graphs problem. Including graph information makes the problem
more challenging both in deriving the algorithm as well as analyzing
it.

For lack of space, we omit proofs and refer the reader to [17],
which includes expanded coverage of the results of this paper.

Notation: Lowercase and uppercase boldfaced letters stand for
vectors and matrices respectively. ‖A‖ is the operator norm and
‖A‖F the Frobenius norm of matrix A. ‖x‖, ‖x‖1 denote the Eu-
clidean and the `1 norms of vector x, respectively. The symbol ⊗
stands for the Kronecker product. Finally, Imr is themr×mr iden-
tity matrix and Oa×b is the zero matrix of dimension a× b.

2. MATRIX COMPLETION ON GRAPHS

The original task of matrix completion (MC), e.g., [3, 18], is the re-
covery of a data matrix from a sample of its entries. Formally, given
a matrix X of dimensionm×nwe have access to k � m ·n entries
and the goal is the prediction of the rest unobserved ones. It has been
shown that with low rank and some mild assumptions regarding the
positions of the observed entries, this can be achieved [4, 3]. The
problem can be summarized as follows: Compute a minimum rank
matrix A which is equal to the observation matrix X in the set of
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observed entries Ω; i.e.,

min
A

rank(A)

s.t. Aij = Xij , ∀i, j ∈ Ω

where Xij , Aij is the i, j–th entry of X and A respectively. The
above is NP-hard [3]. However, it has been shown [4] that it can be
relaxed and solved efficiently via convex optimization. The relax-
ation can be written as follows:

min
A
‖A‖∗ (1)

s.t. Aij = Xij , ∀i, j ∈ Ω, (2)

where ‖A‖∗ denotes the nuclear norm of the matrix A with defini-
tion: ‖A‖∗ =

∑min(m,n)
k=1 σk(A), with σk(·) being the k–th larger

singular value. This model can be generalized so that to take into
account the presence of noise. In that case the equality constraint
can be relaxed and the optimization problem becomes:

min
A

λ1‖A‖∗ +
1

2
‖PΩ(A−X)‖2F , (3)

where PΩ is an operator which sets the entries of its matrix argument
not in Ω to zero, and keeps the rest unchanged and λ1 > 0 is a
regularization term.

Low rank implies the linear dependence of rows/columns of X .
However, this dependence is unstructured. In many situations, the
rows and/or columns of matrix X possess additional structure that
can be incorporated into the completion problem in the form of a reg-
ularization. In this paper, we assume that the rows of X are given
on vertices of graphs. More formally, let us be given an undirected
graph G = (V ,E,W ) on the rows with vertices V = {1, . . . ,m},
edges E ⊆ V × V and non-negative weights on the edges rep-
resented by the symmetric m × m matrix W . If there is an edge
between i, j, then Wij = Wji = 0, and we shall assume the graph
has no parallel edges or loops. The latter means that the diagonal
elements of W are zero.

The weights capture strength of association between the row el-
ements, and we represent them via the Laplacian. This is a positive
semidefinite (PSD) matrix L defined as D −W where D is the
diagonal matrix such that Dii =

∑m
j=1 Wij .

The problem of matrix completion over graphs can be formu-
lated as follows, [15]:

min
A

λ1‖A‖∗ +
1

2
‖PΩ(A−X)‖2F + λ2tr

(
ATLA

)
, (4)

where tr
(
ATLA

)
is a graph smoothing regularization constraint

and λ2 > 0 is the regularization parameter associated with it. In fact
it holds that ∑

i,j

Wij‖ai − aj‖2 = tr
(
ATLA

)
,

with ai being the i–th row of the matrix A. In words we demand
that the rows corresponding to neighboring nodes to be “close” (in
some sense) to each other. This problem, which was originally been
proposed in [15] has been generalized in [16] to tackle scenarios
where outliers are present.

Before we turn our focus to the online problem, we present some
useful properties of the nuclear norm. The nuclear norm of a matrix
M of rank r can be written as [19]

‖M‖∗ = min
U∈Rm×r,R∈Rr×n

{‖U‖2F + ‖R‖2F } s.t.M = UR.

(5)

Note that the number of columns of the matrix U , denoted by r, is
also a variable. The problem of estimating r goes beyond the scope
of this paper and from now on we will consider that r will be equal
to the rank of X and will be known. This assumption was also made
in other papers (e.g., [8, 7]) dealing with online matrix completion.
Taking this into account and substituting (5) into (4) leads us to:

min
U,R :UR∈Rm×n

λ1

(
‖U‖2F + ‖R‖2F

)
+

1

2
‖PΩ(UR−X)‖2F

+ λ2tr
(
RTUTLUR

)
. (6)

2.1. ONLINE MATRIX COMPLETION ON GRAPHS

The above deals with the batch problem, i.e., the one in which all
the measurements are available a priori and are used in the compu-
tations as a whole. However, in many applications, having access
to all the data may be impractical and/or infeasible. More specifi-
cally, in big data applications, the data might not be able to be stored
and the algorithm needs to retrieve them from slow memory devices
or to access them over networks. Moreover, in batch operation the
unknown subspace has to be re-computed from scratch whenever a
new datum becomes available. Our goal here is to present an online
solution, but before we do so, we discuss robustification.

A drawback of the matrix completion techniques, which rely on
the Frobenious norm minimization is that they are sensitive to heavy
tailed noise. In the batch scenario, Robust PCA (RPCA) originally
proposed in [5] overcomes this limitation. In particular, the model
generating the matrix comprising missing entries is the following:

X = M + S, (7)

where M is a low rank matrix and S is a sparse matrix, the entries of
which have arbitrarily large amplitude; the latter matrix models the
outlier noise. The optimization problem for the matrix completion
takes the following form:

min
M,S
‖M‖∗ + λs‖S‖1,

s.t. M + S = X,

where ‖ · ‖1 promotes sparsity and has the following definition
‖S‖1 =

∑
i,j |Si,j |, i.e., the sum of absolute values of the entries

of S.
The aforementioned problem has been extended to the online

scenario, e.g., [8, 7]. This will be our starting point for deriving the
online robust MC algorithm on graphs. At each step, i.e., t, a single
column of the matrix X , denoted xt ∈ Rm (which also has missing
entries) becomes available. It is generated as

xt = PΩt (Urt + st + vt) ,

where U is anm×r matrix, rt ∈ Rr , vt ∈ Rm is the noise process,
st is the outlier vector and Ωt is the set of observed entries at time
t. For this, we assume that the `0 (pseudo) norm, which counts the
number of non-zero coefficients, is bounded and smaller thanm, i.e.,
‖st‖0 ≤ m′ < m.1 The problem we want to solve becomes:

min
U,{rτ},{sτ}

λ1

2
‖U‖2F +

t∑
τ=1

(1

2
‖PΩτ (xτ −Urτ − sτ )‖22

+
λ1

2
‖rτ‖22 +

λ2

2
(rTτ U

TLUrτ ) +
λ3

2
‖sτ‖1

)
,

(8)

1In practice if m′ = O(logm) then we can recover the sparse vector.
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Algorithm 1: Online Robust Matrix Completion on
Graphs

Input: λ1, λ2, L
Output: Computed Subspaces Ut and vectors rt, st

1 Initialize: U0

2 for t = 1, 2, . . . do
3 Compute st by solving the lasso (11) using Ut−1 and Ωt

4 Compute rt by applying equation (10)
5 Update Rt and Qt using xt, rt and st
6 Compute Ut using(12)

where λ3 > 0.
For given Ω,U , x and s, the expression

‖Ω(x−Ur− s)‖22 + λ1‖r‖22 + λ2(rTUTLUr) + λ3‖s‖1 (9)

is minimized when
r = B(x− s), (10)

where B = A−1UTΩ and A = λ1Ir+UT (Ω+λ2L)U . Treating
r as a function of s and plugging it back into (9), the joint minimiza-
tion of r and s for given U is formulated as

min
s
‖Ω(Im −UB)(x− s)‖22 + ‖

√
λ1B(x− s)‖22

+ ‖
√
λ2L

1
2UB(x− s)‖22 + λ3‖s‖1,

where we have used that L is PSD. This, in turn can be formulated
as the following lasso estimator:

min
s
‖C(x− s)‖22 + λ3‖s‖1, (11)

where C is the (m + r + m) × m matrix such that C =[
(Ω(Im −UB))T ,

√
λ1B

T ,
√
λ2

(
L

1
2UB

)T ]T
. This is a con-

vex optimization problem and therefore efficiently solvable. We use
the above to compute rt and st using Ωt, xt and Ut−1. Similar to
the above algorithm, we use these computed values to compute Ut.
Taking partial derivative of (8) with respect to U and setting it to
zero, we get Qt = λ1U + λ2LURt +

∑t
τ=1 ΩτUrτr

T
τ where

Qt =
∑t
τ=1 Ωτ (xτ − sτ )rTτ and, as before, Rt =

∑t
τ=1 rτr

T
τ .

We vectorize and solve, thereby getting

u =

(
t∑

τ=1

rτr
T
τ ⊗Ωτ + λ1Imr + Rt ⊗L

)−1

qt, (12)

where qt = vec{Qt}. The core steps of the algorithm are summa-
rized in Algorithm 1.

3. CONVERGENCE

Defining gt(U , r, s) :=
(

1
2
‖PΩt(xt − Ur − s)‖22 + λ1

2
‖r‖22 +

λ2
2

(rTUTLUr) + λ3‖s‖1
)

, Algorithm 1 effectively aims to min-

imize the following2: Ct(U) = 1
t

∑t
τ=1 minr,s gτ (U , r, s) +

λ1
2t
‖U‖2F .

2We normalize with t so as to prevent the existence of unbounded values.
It can be readily seen that the solution at each time step doesn’t depend on
the normalization.

As time increases, minimization of Ct(U) becomes computa-
tionally demanding since it involves solving t least squares and t `1
minimization problems for the estimation of r and s respectively.
For this reason, the algorithm actually minimizes the following ap-
proximation of the above cost function:

Ĉt(U) =
1

t

t∑
τ=1

gτ (U , rτ , sτ ) +
λ1

2t
‖U‖2F , (13)

where {rt, st} = arg minr,s gt(Ut−1, r, s).

Theorem 1 Under certain assumptions, which are detailed and jus-
tified in [17], Algorithm 1 converges to a stationary point of the ob-
jective function, i.e., limt→∞∇Ct(Ut) = Or×m.

Roughly, this theorem states that asymptotically the estimated
subspace of the approximate cost function, which overestimates the
original one, will converge to stationary point of the latter. As our
experiments demonstrate this provides a good approximation.

4. EXPERIMENTS

4.1. SYNTHETIC NETFLIX DATASET

4.1.1. Generating data and noise

We generate a synthetic Netflix dataset, similarly as in [15]; the ma-
trix that springs from this dataset obeys both low–rank and graph
structure properties. Rows represent users and the columns represent
movies; the corresponding entries denote the rating. We consider a
number mc = 10 of communities, forming a partition for the rows.
The underlying graph is constructed as follows: two individuals are
adjacent in the graph if and only if they belong to the same com-
munity. Similarly we assume that we have nc = 20 communities
for the columns. The data matrix is then constructed by assigning a
random value from {1, . . . , 5} to each couple (movies community,
users community). It can be readily seen that this ideal matrix is of
rank r = min(mc, nc). However, to make the experimental setup
more realistic we add noise and we also permute all the columns.

Noise is generated as follows. Assuming that an user is likely to
have a different opinion on a movie than the rest of his community,
we define Nprob ∈ [0, 1] the probability of a rating to be affected
by the noise, and Nlevel ∈ {1 . . . 5} the maximum level of noise.
Then, for each entry Xij of the data matrix, we pick the parameter a
according to a Bernoulli B(1, Nprob) distribution and the parameter
b according to the uniform U({−Nlevel,−Nlevel+1, . . . , Nlevel−
1, Nlevel}) distribution. The entry of the corresponding corrupted
matrix is then defined as:

X̃ij = max(min(Xij + ab, 5), 1)

One can easily verify that this definition preserves the fact that
the occurring noisy entry will take a value, which belongs to the
{1, . . . , 5} set.

4.1.2. Error measurement

We run the online algorithm and compute for each time step the
euclidean distance between the predicted vector, x̂i = Uiri, and
the true one, divided by the norm of the latter. Afterwards, we
compute the mean over time and the resulting metric is given by:
err(t) = 20 log10

(
1
t

∑t
i=1

‖x̂i−xi‖2
‖xi‖2

)
.
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Fig. 1. Errors for Netflix dataset

4.1.3. Results

In the following we study the realistic case of 20% missing entries in
the observations. We assume the sampling of the entries is uniform,
which may not be true in practice. However the case of non-uniform
sampling goes beyond the scope of this paper.

We compare our algorithm with that presented in [7], which is
suitable for robust online matrix completion, albeit no graph infor-
mation is included. In both algorithms the regularization parameter
related to the sparse outlier noise is set equal to zero, since in this
experiment we do not assume outliers. The rest parameters are cho-
sen via cross validation so that all the algorithms exhibit the best
trade–off between convergence speed and steady state error floor.
Contenting ourselves with a small level of noise (Nprob = 0.3 and
Nlevel = 1), we obtain the results presented in Figure 1. It can
be readily observed that the Laplacian regularization improves the
performance, as expected. In fact, Algorithm 1 converges faster to
a lower steady state error floor, compared to the algorithm in [7].
Moreover, setting λ2 = 10 exhibits a slightly improved performance
compared to the λ2 = 1 case.

4.2. CONTINUOUS VALUES DATASET: THE ROBUST CASE

In the previous experiment, the entries of the data matrix are integers
taking values between 1 and 5. Such experiments do not permit us
to evaluate if the robust algorithm deals well with very large (out-
lier) values. Therefore, we turn our focus now on another dataset
generated in a similar way as in the previous experiment, albeit the
entries now are allowed to take continuous values. To that end, they
are drawn from a zero–mean normal distribution with variance equal
to 1. We add i.i.d. Gaussian noise, with standard deviation equal to
σ = 0.2. Furthermore, we add an “outlier” sparse matrix, the non-
zero entries of which have a high magnitude compared to the data
matrix. The sparse matrix is generated randomly and 1% of its en-
tries are non-zero. These non-zeros entries are constructed so that
their magnitude is at least 10 times the maximum value of the data
matrix. Doing so, we have significant outliers. We compare the fol-
lowing algorithms: Algorithm 1 with λ3 =∞3, labelled “Algorithm
1”; the same with 0 < λ3 < ∞, labelled “Algorithm 2”; a grass-
mannian manifold based algorithm suitable for online robust matrix
completion, [9]; and the algorithm of [7]. Again, the parameters are
chosen via cross validation. Figure 2 presents the evolution of the
error at each time step. It can be readily seen that, Algorithm 1 con-
verges to a high error floor, since the presence of outliers is not taken

3This effectively reduces the algorithm to one which takes no account of
sparisty, since it will set the vector s to zero

Fig. 2. Comparison of the standard and robust methods in the con-
tinuous values experiment.

into account. Furthermore, the proposed algorithm outperforms the
other robust based schemes, since it exploits the underlying graph
structure.

4.3. REAL NETWORK DATA

Let us now evaluate our proposed algorithm using data collected
from a real network. In particular, we use the dataset captured in
2006, [20] on GEANT, the high bandwidth pan-European research
and education backbone. The network comprises 22 nodes and 36
links. We consider that at each time step, the load from a subset of
the links becomes available to us, whereas the load for the rest of
them is unknown. Our goal is to estimate the load for these links. To
that direction, we employ Algorithm 1 with different values of the
Laplacian related regularization parameter λ2, as well as the online
matrix completion algorithm of [7]. In all the algorithms, we fix λ1

to be equal to 0.1, since this particular choice leads to a fast con-
vergence speed and a low steady state error floor at the same time.
The results are shown in Fig. 3. The online matrix completion algo-
rithm is able to provide a good estimate of the missing entries due
to the low–rank property of the link load traffic matrix. Indeed, the
network traffic pattern is highly correlated both temporally and spa-
tially (i.e., across different links). This amounts to claiming that the
data exhibit a low rank structure. Nevertheless, the results can be
enhanced significantly if we exploit the network graph topology, via
the Laplacian smoothing.

Fig. 3. Comparison of the proposed algorithm using the GEANT
database
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