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ABSTRACT
Crowdsourcing approaches rely on the collection of multiple
individuals to solve problems that require analysis of large
data sets in a timely accurate manner. The inexperience of
participants or annotators motivates well robust techniques.
Focusing on clustering setups, the data provided by all an-
notators is suitably modeled here as a mixture of Gaussian
components plus a uniformly distributed random variable to
capture outliers. The proposed algorithm is based on the
expectation-maximization algorithm and allows for soft as-
signments of data to clusters, to rate annotators according to
their performance, and to estimate the number of Gaussian
components in the non-Gaussian/Gaussian mixture model, in
a jointly manner.

Index Terms— Crowdsourcing, Gaussian plus non-
Gaussian Mixture, Outlier, EM algorithm, Bayesian Infor-
mation Criterion

1. INTRODUCTION
Parameter estimation of mixture distributions has well-
documented merits for unsupervised learning tasks encoun-
tered in general-purpose clustering applications for various
data mining and machine learning applications including im-
age or speech analysis. Clustering algorithms are particularly
relevant to applications using a crowdsourcing methodology1,
which leverages multiple individuals having access to large
data sets instead of relying on a single expert. In a consid-
erable number of crowdsourcing applications, annotators are
asked to click on specific structures of an image. However,
the whole process is severely error-prone since annotators
are usually non-experts [1]. For instance, in the MalariaSpot
project [2] annotators are asked to identify malaria parasites
in digitized blood smears through an online game for an early
malaria diagnosis, but they often mistake parasites with other
cells such as leukocytes, for instance; in the Microscope Mas-
ters project [3], annotators must pick out proteins in electron
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petitividad” of the Spanish Government, ERDF funds (TEC2013-41315-
R,TEC2015-69648-REDC,TEC2016-75067-C4-2-R,TEC2013-47020-C2-1-
R, TACTICA), the Catalan Government (2014 SGR 60 AGAUR), and the
Galician Government (AtlantTIC, GRC2013/009, R2014/037).

1A representative sample of crowdsourcing projects can be found in
Zooniverse platform at https://www.zooniverse.org.

microscopy images for biological molecule reconstruction
but, instead, they mark smudges or proteins that are clumped
together. Other erroneous clicks do not correspond to any
particular structure, and are just placed on random parts of
the image; see e.g. Fig. 2 in [2].

The standard approach to process the unreliable data col-
lected by crowdsourcing applications consists of two steps.
First, the data provided by all annotators are clustered to iden-
tify labels. Subsequently, since some of the labels may be er-
roneously identified, a decision is made on each one whether
it corresponds to a desired structure or not [1], [4]. When
known, the true labels are referred to as the gold standard. It
is important to remark that the closer the identified labels are
to the gold standard, the lower the probability of false detec-
tion in the second step. Crowdsourcing approaches also entail
rating annotators according to their performance, so that data
provided by unreliable annotators in future experiments can
be discarded. Interestingly, data is available in a streaming
manner at possibly different locations, which calls for dis-
tributed online implementation of the solutions.

This paper focuses on clustering and the associated an-
notators rating problem. The probability density function
(pdf) of the collected data is modeled as a mixture of an
unknown number of Gaussian components plus a uniformly
distributed random variable (rv), which captures outliers.
Further, the proposed formulation includes a set of latent
rv’s to denote the annotators’ performance. A closed-form
approximate maximum likelihood (ML) estimate of the pa-
rameters for Gaussian plus non-Gaussian mixtures was given
in [5], where the number of Gaussian components is esti-
mated by choosing among a set of pre-estimated candidate
models. Instead, here we opt for an approach based on the
expectation-maximization (EM) algorithm [6] that solves the
overall estimation problem jointly. As a result, the proposed
algorithm will allow for (a) soft assignments of data points to
clusters; (b) rating of annotators; and, (c) estimating the num-
ber of Gaussian components in the mixture model based on
the algorithm developed in [7] for a Gaussian mixture only.
Relative to prior works in robust clustering [8–12], the present
contribution accounts for the variable reliability of data to be
clustered, which is a distinct feature of crowdsourcing.

The rest of the paper is organized as follows. Sec. 2 de-
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scribes the data probabilistic model, and Sec. 3 develops the
EM-based algorithm. Sec. 4 presents simulation results, and
Sec. 5 concludes the paper and comments on future work.

2. DATA MODEL
Consider a set of R annotators indexed by rPt1, . . . , Ru, who
provide instances of a D 1̂ vector2. Instances of annotator r
are modeled by the D 1̂ random vector

xr “ ar
ÿM

m“1
δpzr ´mqwm ` p1´ arqu (1)

where δp¨q denotes the Kronecker delta function; wm „

N pµm,Σmq is the mth D-dimensional Gaussian rv with
mean µm and covariance matrix Σm for mPt1, . . . ,Mu; and
u is a D-dimensional uniformly distributed rv with indepen-
dent entries and known pdf3 denoted by gU p¨q with support
rUmin
d ,Umax

d s for dP t1, . . . , Du. Variables tar;@ru P t0, 1u
are independent Bernoulli with probability pr–Prtar“1u,
and tzr;@ruPt1, . . . ,Mu are independent rv’s with probabil-
ity Prtzr“mu–πm. We further assume that all rv’s in (1) are
independent among them. The model in (1) is a mixture ofM
Gaussians plus a uniformly distributed rv with a priori prob-
abilities that depend on the annotator. Note that when ar“1,
the instance provided by annotator r corresponds to one out
of M Gaussians, given by zr. Conversely, when ar“0, the
instance of annotator r is a uniformly distributed rv, and it is
thus deemed as being an outlier. Therefore, probability pr is
a measure of the annotators’ reliability since the lower pr is,
the higher the probability that annotator r provides an outlier.

Suppose that each annotator r provides NrPN instances
given by txr,i PRDˆ1; i“1, .., Nru, which are independent
identically distributed (iid) realizations of xr in (1). Let X–

txr,i; r“1, . . . , R and i“1, . . . , Nru collect the instances of
all annotators, with cardinality equal to N –|X |“

řR
i“1Nr.

Similarly, collect in A–tar,i;@r, iu and Z–tzr,i;@r, iu, with
cardinality N , the set of all iid realizations of ar and zr, re-
spectively. Under the aforementioned independence assump-
tions, the likelihood function of the provided instances X is

fpX ;θq “
R
ź

r“1

Nr
ź

i“1

´

pr

M
ÿ

m“1

πm N pxr,i;µm,Σmq

` p1´ prqgU pxr,iq
¯

(2)

where N pxr,i;µm,Σmq is the likelihood function of instance
xr,i given zr,i“m, and vector θ gathers the set of all unknown
parameters, namely

θ–rµ1; ...;µM ;vecpΣ1q; ...; vecpΣM q;π1; ...;πM ;p1; ...;pRs.
(3)

The objective is not only to cluster data, but also to estimate
the M cluster centroids tµm;@mu, the covariance matrices
tΣm;@mu which are indicative of the cluster spread, the

2If instances correspond to clicks on an image, then D“2
3A reasonable assumption for the crowdsourcing applications in Sec. 1.

probability of occurrence of each cluster tπm;@mu, and the
annotator’s reliability tpr;@ru. Although out of the scope
of this work, all these parameters might be useful in crowd-
sourcing applications to support the decision whether the
identified clusters correspond to a desired structure or not. As
a closed-form maximization of fpX ;θq is not possible, we
resort to a numerical solution based on the EM algorithm.

3. EM FOR CLUSTERING CROWDSOURCED DATA
As a closed-form maximization of fpX ;θq is not possible,
we resort to the EM algorithm [13] to estimate the unknown
parameters in (3), which is developed first when the number
of Gaussian components is known, i.e. M0“M .
3.1. Number of Gaussian components known
We regard X as the incomplete observation and the set
tX ,A,Zu as the complete one. Initialized with θ̂0, at it-
eration t`1 with tě0, the EM algorithm proceeds as follows.

S1) E-step: given an estimate θ̂t, compute the conditional
expectation of the log-likelihood function

Qpθ̃; θ̂tq – EA,Ztlog fpX ,A,Z; θ̃q | θ̂t,X u (4)

where θ̃ denotes a ’trial’ value of θ.

S2) M-step: obtain the estimate for the next iteration as

θ̂t`1 “ argmax
θ̃

Qpθ̃; θ̂tq. (5)

Recalling that A and Z are independent, it holds that (cf. (2))

Qpθ̃; θ̂tq“
R
ÿ

r“1

Nr
ÿ

i“1

αtr,i

M0
ÿ

m“1

ζtr,i,m log
´

p̃rπ̃mN pxr,i; µ̃m, Σ̃mq

¯

`

R
ÿ

r“1

Nr
ÿ

i“1

p1´ αtr,iq log pp1´ p̃rqgU pxr,iqq (6)

where αtr,i – Prtar,i “ 1|θ̂t,X u and ζtr,i,m – Prtzr,i “

m|θ̂t,X u are the posterior probabilities of the hidden vari-
ables. Then, using Bayes’ theorem, in the E-step one basi-
cally updates these a posteriori values according to

αtr,i“
p̂tr

řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq

p̂tr
řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq ` p1´ p̂
t
rqgU pxr,iq

(7)
and

ζtr,i,m“
π̂tmN pxr,i; µ̂tm, Σ̂t

mq
řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq
. (8)

In the M-step, the parameters are updated to maximize (6).
Thus, at iteration t, the annotators’ reliability is updated as

p̂t`1
r “

1

Nr

ÿNr

i“1
αtr,i, @r ; (9)

and the probability of the mth Gaussian component becomes

π̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,iζ

t
r,i,m

řR
r“1

řNr

i“1 α
t
r,i

, (10)
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which satisfies
řM0

m“1 π̂m“1. Interestingly, the denominator
in (10) is a soft count of all non-outliers instances and, simi-
larly, the denominator in (11) is a soft count of instances that
belong to themth Gaussian component at iteration t`1. Fur-
ther, the mean vectors and covariance matrices of the Gaus-
sian components @m“t1, . . . ,M0u are given by

µ̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m xr,i

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m

, and (11)

Σ̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,iζ

t
r,i,mpxr,i ´ µ̂

t`1
m qpxr,i ´ µ̂

t`1
m qH

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m

(12)
As proved in [6], the EM iterates will converge at least to a
stationary point (local optimum) of the ML objective in (2).

3.2. Estimating the number of Gaussian components
The number of Gaussian components is assumed known so
far. To deal with a more practical setting where M is un-
known, we modify the EM algorithm of Sec. 3 by adapting
the CEM method in [7] to our Gaussian plus non-Gaussian
mixture model in (2). First, we assume a Dirichlet-type prior
for the tπm;m“1, . . . ,M0u with M0"M as follows

fpπ1, . . . , πM0
q9 exp

"

´
L

2

ÿM0

m“1
log πm

*

(13)

whereL–DpD ` 3q{2 is the number of parameters per Gaus-
sian component. The negative exponent of the Dirichlet-type
prior pushes πm to be equal either to 0 or to 1, and since
řM0

m“1 π̂m“1, this prior promotes sparsity in the distribution
mixture. The probability of the mth Gaussian component at t
is computed as the solution of the following maximum a pos-
teriori problem, which may be also seen as a penalization to
the likelihood, subject to some constraints.

π̂t`1
m “ argmax

π̃m

Qpθ̃ ; θ̂tq ` log fpπ̃1, . . . , π̃M0
q

subject to π̃m ě 0;
ÿM0

m“1
π̃m “ 1

The proposed algorithm proceeds as follows. The E-step up-
dates the a posteriori probabilities as in (7) and (8). The M-
step is modified and instead of (10), the probability of themth

Gaussian component becomes the solution of (14) given by

π̂t`1
m “

maxt0, p
řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,mq ´

L
2 u

řM0

m“1 maxt0, p
řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,mq ´

L
2 u

(14)
and the parameters tµ̂t`1

m , Σ̂t`1
m u are computed as in (11) and

(12), but only for thosemPt1, . . . ,M0u such that π̂t`1
m ‰0. Pa-

rameters tp̂t`1
r ;@ru are updated as in (9). For convenience,

let M̂ t denote the number of Gaussian components for which
π̂tm ‰ 0. Note that the impact of (14) on the iterative algo-
rithm is that some of the components of the Gaussian mixture

will be eventually annihilated. It is therefore convenient to
select M0"M , but also because it reduces the sensitivity of
the algorithm to the initial values of the remaining parame-
ters. Additionally at each iteration our algorithm calculates
the Bayesian information criterion (BIC), namely

LpX, θ̂t, M̂ tq“´Qpθ̃; θ̂tq `
LM̂ t

2
log

˜

R
ÿ

r“1

Nr
ÿ

i“1

αtr,i

¸

(15)

where the double summation inside the log function is the
soft count of non-outlying instances at iteration t. Overall,
the BIC criterion is used to terminate the EM iterations, and
also once convergence is reached, to check if larger values of
LpX, θ̂t, M̂ tq are achieved by setting to zero one by one those
components not annihilated by (14). Specifically, the proce-
dure is the following one. First, the presented algorithm is
run until (15) does not vary substantially from one iteration
to the next. Once convergence is reached, the least probable
component of the Gaussian mixture, i.e. the one with smallest
non-zero π̂tm, is annihilated and the algorithm is run until con-
vergence again. This last step is iterated until M̂ t“1 or equal
to the minimum number of Gaussian components if known.
The final estimates, denoted by tθfinal, M̂finalu, are those
tθt, M̂ tu among all t that maximize (15).

4. SIMULATIONS

Simulations are shown to illustrate the performance of the
novel algorithm. We consider R“ 20 annotators providing
instances with D “ 2 according to (1) confined to a rect-
angular area of dimensions Umin

1 “ 1, Umax
1 “ 4, Umin

2 “ 0
and Umax

2 “ 5. The total number of instances is N “ 850
with NrPr36, 48s. Fifteen annotators have a reliability pr“
0.95, three have pr“0.75, and two have low reliability with
pr“0.25. The mixture consists of M “10 Gaussians with
equal probability, πm“ 0.1. As an example, Fig. 1 shows
a realization with N “ 850 instances, the Gaussian means
tµm;@mu, the centroids estimated with the fuzzy clustering-
means (fcm) function of MATLAB using the true number of
Gaussians, and the centroid means estimated with our algo-
rithm. In this setup, the covariance matrices of five Gaussian
components are diagtΣmu“r0.04, 0.05s, four Gaussian com-
ponents diagtΣmu“r0.08, 0.1s and a single Gaussian compo-
nent has even larger variances diagtΣmu“r0.12, 0.15s.

The experiment proceeds as follows. The EM-based algo-
rithm in Sec. 3.2 is run for K“500 independent realizations
using the same Gaussian plus non-Gaussian density mixture
of Fig. 1. The parameters are initialized as follows. The
initial estimated centroids tµ̂0

1, . . . , µ̂
0
M0
u are the centroids

estimated by the K-means algorithm [14] with M0“40; the
initial estimated Gaussian covariance matrices are all set to
tΣ̂0

m“diagtr0.15 0.25su;@m“1, . . . ,M0u. The algorithm
is executed until M̂ tă 6 or up to 200 iterations. For com-
parison purposes, the fcm function of MATLAB with M “

10 clusters is also tested. A realization is considered suc-
cessful if M̂final“M and a one-to-one correspondence can
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Fig. 1: Instances +, true Gaussian means big l, centroids estimated
by Fuzzy c-means© and estimated by the modified EM small l.

be established between the estimated centroids and the true
Gaussian means according to a minimum distance criterion.
Our algorithm succeeds in 94% of the realizations whereas
fcm only in 47%. Fig. 2 depicts the cumulative distribution
function for the means of evaluating the average square error
(ASE), namely the square error between the true Gaussian
means tµm;m“1, . . . ,Mu and the final estimated centroids
tµ̂finalm ;m“1, . . . ,Mu averaged over the M , i.e.

ASE –
1

M

ÿM

m“1
||µ̂finalm ´ µm||

2
2. (16)

Note that only successful realizations are considered in (16).
The proposed algorithm performs much better, since theASE
is less than 6ˆ 10´3 in all successful realizations (i.e, 94%),
whereas the ASE is much higher for fcm. The following fig-
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Fig. 2: Cumulative distribution function of ASE with (a) the pro-
posed EM-based algorithm, and (b) fuzzy c-means

ures of merit are further attained by the proposed algorithm in
estimating the remaining parameters, in which only success-

ful realizations are taken into acccount.

1
K

řK
k“1

1
M

řM
m“1 |π̂

final
m ´ πm|

2 “ 2.3ˆ 10´5

1
K

řK
k“1

1
R

řR
r“1 |p̂

final
r ´ pr|

2 “ 2.7ˆ 10´3. (17)

Finally, the evolution of LpX , θ̂t, M̂ tq and M̂ t in a single
realization is shown in Fig. 3. In this particular realiza-
tion, LpX , θ̂t, M̂ tq increases due to the annihilation of Gaus-
sian components performed in (14) until iteration t “ 109,
where BIC is stable. After this point, it decreases gradu-
ally each time the Gaussian component with lower probability
is annihilated. The algorithm stops at iteration t“ 139 be-
cause M̂139“5. The final estimated values tθfinal, M̂finalu

used in (16) and (17) are those for which the maximum of
LpX , θ̂t, M̂ tq is attained, marked with a circle in red at itera-
tion t“109, and corresponding to M̂final“10.
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Fig. 3: Evolution of (a) LpX , θ̂t, M̂ t
q, and (b) M̂ t.

5. CONCLUSIONS

This paper formulates and solves a clustering and estimation
problem for data adhering to a Gaussian mixture model in
the presence of outliers, that are modeled as a uniformly dis-
tributed rv. The work fits nicely in the context of crowdsourc-
ing applications, where observations are often provided by
different annotators, each with unknown expertise. The pro-
posed algorithm jointly estimates the density parameters of
the Gaussian plus non-Gaussian mixture, the number of Gaus-
sian components, and the reliability of annotators. Both the
data model and the proposed algorithm are broad enough to
be of interest in other general-purpose clustering applications.
Our future research agenda includes generalizations to kernel-
based crowdsourcing approaches to allow for clustering high-
dimensional or nonlinearly separable datasets, as well as thor-
ough testing and comparisons on real datasets provided e.g.,
by contaminating the MINST datasets to account for the vari-
able reliability present in crowdsourcing collections.
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