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ABSTRACT

MMSE filtering of signals contaminated with additive noise is

addressed with explicit uncertainty of the second-order target signal

statistics. The unfortunate lack of stationarity of speech, and hence

the phenomenon of musical noise in speech enhancement, is an ideal

problem for the proposed approach. Specifically, we complement the

established short-time power-spectral subtraction for speech power

estimation with a prior of the momentary speech-power level. The

MMSE estimator for Gaussian speech amplitudes is then derived un-

der these circumstances. The potential for the enhancement of noisy

speech is briefly demonstrated by SNR and PESQ analysis.

Index Terms— optimum filtering, speech enhancement

1. INTRODUCTION & RELATION TO PRIOR WORK

The status of optimum filtering of noisy signals has come a long way

from the celebrated Wiener filter, which is the linear minimum mean-

square error (MMSE) filter [1, 2, 3]. It relies on second-order statis-

tical a priori information, i.e., the power spectral densities (PSDs)

of target and noise signals. More general insight into MMSE filter-

ing is provided in concurrent statistical signal processing literature,

e.g., [4, 5], which yields the Wiener filter as a “nonlinear” MMSE

estimator based on Gaussian random processes.

With respect to the field of speech enhancement, alterna-

tive cost functions and spectral weighting rules were deployed in

form of the short-time spectral amplitude estimator (MMSE-STSA)

[6], the log-spectral amplitude estimator (MMSE-LSA) [7], the

psychoacoustically-motivated speech enhancement rules [8, 9], the

more recent family of Bayesian extensions of previous techniques

[10, 11, 12], and eventually the super-Gaussian speech modeling ap-

proach [13, 14] in MMSE filtering.

Another dimension in speech enhancement, which is largely

independent of the optimum filtering rule under consideration, is

to support the construction of the filter with an estimate of the

noise PSD. This includes estimators based on voice-activity detec-

tion (VAD) [15, 16], minimum statistics [17], minimum-controlled

recursive averaging [18], or speech presence probability [19]. We

shall for the remainder of this paper assume that one of these meth-

ods can provide us with the noise PSD of sufficient accuracy.

The simplest way of qualifying the dimension of our paper is

to see it as a fresh alternative for achieving the suppression of the

“musical noise” phenomenon. The latter is essentially due to the

inaccurate short-time estimation of the time-varying and frequency-

dependent speech PSD from a noisy speech signal. Other authors

have approached this important dimension by local averaging of

spectral magnitudes [20], noise over-subtraction and spectral floor-

ing [21], or additional cepstral smoothing [22]. We do, instead,

frame the ubiquitous short-time spectral subtraction technique [20]

into a Bayesian framework in order to unite both the optimum filter-

ing and the musical-noise suppression in the MMSE sense.

2. CLASSICAL MMSE-FILTERING OF NOISY SPEECH

2.1. Signal Model and Signal Enhancement Objective

Fig. 1 depicts the top-level architecture of the optimum filtering

problem. Speech s(k) is recorded or observed in the presence of ad-

ditive noise n(k). Consecutive segments of the noisy signal y(k) at

discrete time k are translated into the short-time Fourier domain via

discrete Fourier transform (DFT). Here it is assumed that the time-

frequency domain spectrum Y (Ωµ,κ) is decorrelated both along dis-

crete frame-time κ and discrete frequency Ωµ. While some authors

have recently considered and successfully exploited a residual cor-

relation of the time-frequency representation of noisy signals across

multiple time-frequency bins [23, 24, 25], we will here carry on

with the conventional assumption of decorrelation. The noisy DFT-

domain representation Y (Ωµ, κ) = S(Ωµ, κ)+N(Ωµ, κ) is then

weighted by individual weights H(Ωµ, κ), such that optimal recon-

structions Ŝ(Ωµ,κ) and ŝ(k) of the input speech are obtained.
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Fig. 1. Additive noise model and spectral enhancement workflow.

2.2. Minimum Mean-Square Error Estimation

In most of the cases in speech enhancement, the signals s(k) and

n(k) are initially modeled as stationary random processes with

power spectral densities Φs(Ωµ) and Φn(Ωµ), respectively [5]. The

actual enhancement by H(Ωµ, κ), however, takes place “instanta-

neously” (i.e., per time-frequency bin) with possibly independent

local speech and noise statistics. The most popular optimization cri-

terion then is the minimization of the mean-square error between,

say, the desired output S(Ωµ, κ) in the frequency domain and the

actual output Ŝ(Ωµ, κ), i.e.,

Js,y =

∫ ∫ ∣∣S − Ŝ
∣∣2 p(S, Y ) dSdY (1)

where time and frequency indices were dropped to denote random

variables rather than signals. The concept of the mean square-error

Js,y is the averaging of the square error |S − Ŝ|2 across all possible

random events S and Y with joint probability density p(S, Y ). This

conventional concept is spelled out so precisely here, because it will

be subject to generalization below. Right now, we further declare the

status quo in terms of the factorization of p(S, Y ) = p(S|Y ) p(Y )
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via the conditional probability p(S|Y ) and the evidence p(Y ), such

that a minimization of the inner integral

Js =

∫ ∣∣S − Ŝ
∣∣2 p(S|Y ) dS . (2)

achieves the global minimization of Js,y=
∫
Js p(Y ) dY . In (2), Y

thus assumes the particular qualification of an arbitrary and given

observation Y = Y (Ωµ,κ) and is effectively treated as a deter-

ministic parameter. Continuing the derivation from (2), the com-

plex “Wirtinger” derivative [26, 3] with respect to Ŝ is formed and

equated to zero, i.e., ∂Js/∂Ŝ
∗ = 0, obtaining

Ŝs =

∫
S p(S|Y ) dS = Ep(s|y){S|Y } (3)

as the well known representation of MMSE estimation in terms of

the posterior mean of S, given a particular Y . With an assumption

of joint Gaussianity of S(Ωµ, κ) and N(Ωµ, κ), the expectation can

be resolved into the celebrated Wiener filter [5] in its anti-causal

frequency-domain representation [2],

Ŝs = Hw Y (4)

and herein

Hw(Φs) =
Φs

Φy

=
Φs

Φs +Φn

=
SNR

1 + SNR
, (5)

where Φs = E{|S(Ωµ, κ)|
2}, Φn = E{|N(Ωµ, κ)|

2}, and SNR =
Φs/Φn are possibly time- and frequency-dependent.

For the remainder of this paper, we shall assume the availability

of a good estimator of the stationary or slowly time-varying noise

PSD Φn, thus not facing relevant uncertainty of that noise PSD. The

straightforward and yet typical way to resolve the uncertainty of the

speech PSD, i.e., on the basis of the available data, is the “spec-

tral subtraction”. Based on the additive relationship Φy =Φs+Φn

of speech and noise PSD, an ad-hoc speech PSD is determined via

short-time estimation of the noisy-speech PSD Φy , i.e.,

Φ̂s(Ωµ, κ) = Φ̂y(Ωµ, κ)− Φn(Ωµ)

=
1

Q

κ∑

i=κ−Q+1

|Y (Ωµ, i)|
2 − Φn(Ωµ) , (6)

where Q describes the period of short-time stationarity. Further uti-

lization of the short-time estimation Φ̂s(Ωµ, κ) in the Wiener filter

(5) partly yields the desired noise reduction, but also leaves consid-

erable “musical noise” in the output ŝ(k). Since the imperfection

of the short-time spectral subtraction is responsible for the musical

noise phenomena, several authors aimed to refine the local speech-

level or SNR estimation by enhanced local averaging [6, 27, 28, 29]

or deeper modeling of speech statistics [30, 31]. In what follows

we will pursue a different perspective in that we leave the ad-hoc

speech PSD estimator (6) and its inaccuracy to what it is, yet asking

the precise MMSE estimator H(Ωµ, κ) under these circumstances.

3. ROBUST MMSE FILTERING APPROACH

We will work along the structure of the previous MMSE “status quo”

section to extend the methodologies with explicit modeling of the

uncertainty of the speech second-order statistics Φs(Ωµ, κ).

3.1. Extended Minimum Mean-Square Error Estimation

Looking back at (1), we now form a generalized mean-square error

cost function by averaging |S−Ŝ|2 across all possible random events

S, Y , Φs, and Φ̂s with joint probability density p(S, Y,Φs, Φ̂s), i.e.,

Js,y,Φs,Φ̂s
=

∫∫∫∫ ∣∣S−Ŝ
∣∣2 p(S, Y,Φs, Φ̂s) dSdY dΦsdΦ̂s. (7)

In this way, we imply uncertainty of the actual speech PSD Φs, while

taking the availability of our ad-hoc estimate Φ̂s in (6) into account

in the form of a noisy representation of Φs. Naturally this exten-

sion will then require statistical modeling of Φs and Φ̂s in order to

evaluate the integral. We shall come to this aspect in Sec. 4.

From (7), we can proceed along the principles of the pre-

vious section by factorizing the joint density p(S, Y,Φs, Φ̂s) =

p(S,Φs|Y, Φ̂s) p(Y, Φ̂s) via the posterior distribution of the unob-

servable quantities S and Φs and the evidence distribution of avail-

able quantities Y and Φ̂s. Minimization of the inner integral

Js,Φs
=

∫ ∫ ∣∣S − Ŝ
∣∣2 p(S,Φs|Y, Φ̂s) dSdΦs (8)

will then again achieve global minimization of the cost Js,y,Φs,Φ̂s
=

∫ ∫
Js,Φs

p(Y, Φ̂s) dY dΦ̂s. In (8), both Y and Φ̂s now qualify

as our arbitrary and given observations Y = Y (Ωµ,κ) and Φ̂s =

Φ̂s(Ωµ,κ), respectively, and are thus treated in what follows as de-

terministic input data. In the next step, the complex derivative with

respect to the sought quantity Ŝ is again formed and equated to zero,

i.e., ∂Js,Φs
/∂Ŝ∗ = 0, thus obtaining a counterpart of (3),

Ŝs,Φs
=

∫ ∫
S p(S,Φs|Y, Φ̂s) dS dΦs

= Ep(s,Φs|y,Φ̂s)
{S|Y, Φ̂s} , (9)

which is recognized as the conditional-mean estimate of the speech

S across the joint probability of S and Φs, given Y and Φ̂s.

We continue from (9) by simply factorizing the joint probabil-

ity p(S,Φs|Y, Φ̂s) = p(S|Y,Φs, Φ̂s) p(Φs|Y, Φ̂s) via Bayes’ rule.

Then p(S|Y,Φs, Φ̂s)=p(S|Y,Φs), since Φ̂s bears additional unre-

lated values Y = Y (Ωµ,i), i < κ, while p(Φs|Y, Φ̂s) = p(Φs|Φ̂s),

since Y =Y (Ωµ, κ) is already exploited in Φ̂s. Hence

Ŝs,Φs
=

∫ ∫
S p(S|Y,Φs) dS p(Φs|Φ̂s) dΦs

= Ep(Φs|Φ̂s)

{
Ep(s|y,Φs){S|Y,Φs} | Φ̂s

}
(10)

= Ep(Φs|Φ̂s)

{
Ŝs | Φ̂s

}

and we recognize the inner expectation in (10) exactly as our former

posterior-mean estimate (3), now subject to variation and further ex-

pectation in the speech PSD Φs. Still considering jointly Gaussian

complex speech and noise amplitudes, we thus recycle the Wiener

filter Hw=Hw(Φs) as a function of the random variable Φs,

Ŝs,Φs
= Ep(Φs|Φ̂s)

{
Hw Y | Φ̂s

}

= Y Ep(Φs|Φ̂s)

{
Hw | Φ̂s

}

= Y

∫
Hw(Φs) p(Φs|Φ̂s) dΦs

= Y ĤΦs
, (11)
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such that the observation Y can be successfully isolated from the in-

tegration. The remaining integral for ĤΦs
obviously takes the form

of a mean-square error estimator of the function H(Φs) of the ran-

dom variable Φs, given a particular value Φ̂s of our ad-hoc estimator

of the speech PSD. This result nicely dictates the need to determine

in the next step of our derivation the posterior distribution p(Φs|Φ̂s)
of the actual speech PSD according to Bayes’ rule,

p(Φs|Φ̂s) =
p(Φ̂s|Φs) p(Φs)∫

p(Φ̂s|Φs) p(Φs) dΦs

, (12)

which in turn requires statistical modeling of the relationship of Φs

and Φ̂s via the likelihood p(Φ̂s|Φs) and a prior p(Φs).

4. BAYESIAN APPROACH TO THE SPEECH PSD

We shall approach the elements of (12) step by step in order to pre-

pare the evaluation of the robust MMSE estimator in (11). We hence

enter a statistical modeling perspective one layer below the conven-

tional statistical modeling of speech and noise amplitudes.

4.1. Likelihood p(Φ̂s|Φs)

Looking back at definition (6), the probability density of the sum-of-

squares, or more accurately speaking, our mean-of-squares of com-

plex Gaussian random variables Y (Ωµ, κ) is χ2-distributed [5],

p(Φ̂y) =

Φ̂Q−1
y exp

(
−Q

Φ̂y

Φy

)

(Φy

Q

)Q

Γ(Q)
(13)

when Φ̂y≥0, and zero otherwise. Γ(n+1)=n!, n ∈ N, denotes the

discrete Gamma function. Then applying the shift Φ̂s = Φ̂y − Φn

as shown by (6), the probability density is also shifted. Thus

p(Φ̂s|Φs) =
(Φ̂s +Φn)

Q−1 exp
(
−Q

Φ̂s +Φn

Φs +Φn

)

(Φs +Φn

Q

)Q

Γ(Q)
(14)

when Φ̂s ≥−Φn. Note Φn ≥ 0. And we substituted Φy =Φs+Φn

to cast the previous expression into the sought likelihood.

4.2. Prior p(Φs)

Our likelihood has been formulated rigorously according to the well-

defined data observation model. Since a convenient data generation

model for the speech spectral power Φs is not available, we here

conduct a clean speech histogram measurement by

• considering speech data s(k) in the order of 1 minute at

16 kHz sampling from the TIMIT database [32],

• running DFT spectral analysis S(Ωµ, κ) on Hamming-

windowed segments of s(k), cf. Fig. 1, where each segment

is 512 samples with 75% overlap,

• and finally assessing a histogram of the spectral speech level

10 log10(|S(Ωµ, κ)|
2) across all time and frequency bins,

where each spectral amplitude |S(Ωµ, κ)|
2 is meant to be a

particular realization of our random variable Φs.

Fig. 2 depicts the resulting speech histogram on the logarithmic scale

Φs,dB =10 log10(Φs). We acknowledge that such a histogram can

vary with recording quality, sampling frequency, DFT size or win-

dow overlap. Furthermore it should be noted that its placement on

the Φs,dB-axis is somewhat arbitrary in that it depends on the arith-

metic data type and amplitude range of signal s(k). The histogram

thus needs to be found individually for the application at hand.
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Fig. 2. Spectral speech power histogram for 1min of 16 kHz data.

At this point, we can however report that the “Gaussian” shape

or similar characteristics have also been reproduced with a range of

parameters in the vicinity of the typical parameters used for the his-

togram. In line with other authors [29], we thus recommend to fit

this prior speech level to a Gaussian distribution

pdB(Φs,dB) =
1

2πσ2
Φs,dB

exp
(
−
(Φs,dB − µΦs,dB

)2

2σ2
Φs,dB

)
(15)

with sample mean and variance determined from the histogram. For

the sake of numerical compatibility with our likelihood, the “linear”

counterpart of (15) is easily devised as

p(Φs) = pdB(Φs,dB)
∂Φs,dB

∂Φs

=
10 pdB

(
10 log10(Φs)

)

ln(10)Φs

. (16)

4.3. Speech Posterior and Robust MMSE Filter

The transformation of the log-normal distribution in (16) is however

not found in the family of conjugate priors of the χ2-likelihood. As

a result, and conventional in Bayesian inference, we thus have to re-

vert to numerical integration to firstly obtain the evidence p(Φ̂s) =∫
p(Φ̂s|Φs) p(Φs) dΦs for the speech posterior (12) and secondly

the optimal weights ĤΦs
(Φ̂s)=

∫
Hw(Φs) p(Φs|Φ̂s) dΦs in (11).

By then explicitly defining an ad-hoc Wiener filter (WF)

Ĥw(Φ̂s) = Φ̂s/(Φ̂s +Φn) (17)

in line with (5), this one-to-one relationship of Φ̂s and Ĥw can be

exploited to render the resulting weights ĤΦs
conveniently as a func-

tion of the ad-hoc weights Ĥw in Fig. 3. Here it turns out that our

uncertainty-aware (or “robust”) MMSE filter ĤΦs
achieves signif-

icantly more attenuation than Ĥw. In particular, the noisy weights

in the low Ĥw range are attenuated to a flat and positive threshold.

This mechanism will eventually suppress musical noise to a com-

fortable noise floor. The high and supposedly reliable values of Ĥw

are however preserved asymptotically. This amounts to a very sen-

sible behavior of the robust MMSE estimator ĤΦs
and, hence, its

nonlinear transition between low and high values of Ĥw as well.
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The actual characteristic ĤΦs
of the proposed filter is eventually

controlled by the noise level Φn of the likelihood function p(Φ̂s|Φs)
and by the prior speech model p(Φs), which is mainly quantified by

the hyperparameter µdB. For fixed relationship of µdB and Φn, i.e.,

for fixed global SNR = 10 log10(σ
2
s/σ

2
n), where σ2

s = E{s2(k)},

σ2
n=E{n2(k)}, and for the speech material at hand, we also have a

fixed relationship of ĤΦs
and Ĥw. This property can be confirmed

easily from the structure of the likelihood function (14) and extends

the same well-known property of the linear Wiener filter. For a given

“speech in noise condition”, i.e., global SNR, the robust MMSE esti-

mator ĤΦs
is therefore conveniently computed via the ad-hoc weight

Ĥw and a look-up table to comprise the characteristics of Fig. 3.

5. APPLICATION TO SPEECH ENHANCEMENT

We shall eventually study the potential of the proposed filter in terms

of the actual speech enhancement that can be achieved. Experiments

are however restricted to the demonstration of the effects related to

short-time speech reconstruction based on reliable statistical knowl-

edge of the noise power. Hence, we consider a simulation of clean

speech in white noise, where the speech is a new utterance from the

TIMIT database. Other noise types or the related noise power esti-

mation task is beyond the scope of the paper.

We then assess a time-varying (segmental) SNR at block-time κ,

SNRŝ(κ) = 10 log10

( ∑
Ωµ

Φs(Ωµ, κ)
∑

Ωµ
Φs−ŝ(Ωµ, κ)

)
, (18)

in which the required PSDs are computed in sliding windows of the

same interval Q as used for spectral estimation (6), i.e.,

Φs−ŝ(Ωµ, κ) =
1

Q

κ∑

i=κ−Q+1

|S(Ωµ, i)− Ŝ(Ωµ, i)|
2 , (19)

and SNRy(κ) of the input signal just employs Y in place of Ŝ.

Fig. 4 illustrates, besides the SNRy lower bound, the enhanced

SNRŝ by a “spectral-subtraction” (ad-hoc) Wiener filter Ŝs=ĤwY ,

the “robust” MMSE filter Ŝs,Φs
=ĤΦs

Y , and an “informed” Wiener

filter Ŝ =HwY meant as an upper bound. The spectral-subtraction

filter approaches the upper bound during speech presence, but is un-

fortunately missing optimal noise attenuation and SNR enhancement

during speech pause. The robust MMSE filter essentially raises the

SNR during speech pause, even approaching the informed Wiener

filter, while preserving already high SNR in speech presence.

Tab. 1 then generalizes the previous illustration by presenting

single-number results of common instrumental measures for several

“speech in noise conditions”, i.e., different input SNR. Here it turns

out that the robust MMSE filter half-way closes the gap between

pure spectral subtraction and the idealized informed Wiener filter,

with some advantage of robust MMSE in low-noise conditions.

noisy signal spec.-sub. WF robust MMSE informed WF

-10 dB // 1.50 1.5 dB // 1.80 3.5 dB // 1.90 4.5 dB // 2.60

0 dB // 2.02 8.1 dB // 2.50 8.8 dB // 2.57 9.4 dB // 2.82

10 dB // 2.72 15.0 dB // 3.10 15.3 dB // 3.12 15.6 dB // 3.12

Table 1. Global enhancement in terms of time-averaged segmental

SNR [dB] // perceptual evaluation of speech quality (PESQ) [33].

6. CONCLUSIONS

The robust MMSE filter is meant to compensate for the uncertainty

related to short-time spectral estimation in noise. The proposed filter

then inherently amounts to a rigorous form of signal over-attenuation

in mid-SNR ranges and noise flooring in low-SNR ranges, while pre-

serving the already reliable high-SNR domain. In this way, the un-

derlying Bayesian model overcomes more heuristic forms of noise

over-estimation and spectral flooring known in spectral subtraction.

The filtering can thus achieve improved musical noise suppression.
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Fig. 4. SNR of noisy speech and various enhanced signals. Global input SNR=0dB, sliding window length Q=5, DFT analysis frame-size

M=512 samples, Hanning windowed, overlap-add frame-shift R=128 samples, sampling frequency fs=16 kHz.
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