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ABSTRACT

In this paper, we investigate DCTNet for audio signal clas-
sification. Its output feature is related to Cohen’s class of
time-frequency distributions. We introduce the use of adap-
tive DCTNet (A-DCTNet) for audio signals feature extrac-
tion. The A-DCTNet applies the idea of constant-Q trans-
form, with its center frequencies of filterbanks geometrically
spaced. The A-DCTNet is adaptive to different acoustic
scales, and it can better capture low frequency acoustic in-
formation that is sensitive to human audio perception than
features such as Mel-frequency spectral coefficients (MFSC).
We use features extracted by the A-DCTNet as input for clas-
sifiers. Experimental results show that the A-DCTNet and
Recurrent Neural Networks (RNN) achieve state-of-the-art
performance in bird song classification rate, and improve
artist identification accuracy in music data. They demonstrate
A-DCTNet’s applicability to signal processing problems.

Index Terms— Adaptive DCTNet, audio signals, time-
frequency analysis, RNN, feature extraction.

1. INTRODUCTION

Learning feature representation of audio signals is one of
the key interests for audio classification. Audio signals are
rich in physical characteristics, such as energy, fundamental
frequency, and formant, as well as in perceptual character-
istics, such as pitch, timbre and rhythm [1], while they are
usually contaminated by various kinds of noise. A good fea-
ture representation should represent those characteristics in
compact forms, while robust to various kinds of noise. Tradi-
tional audio signal features, such as Mel-Frequency Cepstral
Coefficients (MFCC) and ERB-rate scale features can reveal
the intrinsic attributes of audio signals. They are proposed
based on auditory and physiological evidence of how humans
perceive audio signals [2], and are closely related to the short
time Fourier transform or the constant-Q transform [3]. They
are almost invariant under local scaling and frequency shift.
However, the major drawback of these feature is that they are
sensitive to noise [4].

Recently, Convolutional Neural Networks (CNNs) have
demonstrated great success in audio signal classification [5,

6, 7]. CNNs are able to carry out accurate parameter estima-
tion [8] even in the presence of significant noise. They employ
learned filters, typically obtained through stochastic gradient
descent (SGD) methods, and convolve them with signals to
obtain features for classification [5]. However, they depend
heavily on expert parameter tuning, and it is computationally
expensive to learn the coefficients of the filters. It is also hard
to physically interpret the learned coefficients, although we
note that some studies found similarities of mel-filter banks
and learned filter banks [9].

On the other hand, the scattering transform, proposed by
Mallat [10], employs a pre-specified collection of wavelets
as filters, have obtained state-of-the-art results on some mu-
sic and speech datasets [11]. The structure of the scattering
transform is similar to a cascade of constant-Q or mel-filter
banks, and the scattering transform can capture useful spec-
tral content of acoustic signals. The scattering coefficients can
illustrate chord and attack interferences [11]. A similar ap-
proach was proposed in the form of PCANet [12], which uses
eigenfunctions from eigen-decomposition as filters. PCANet
has achieved competing results in image classification. Com-
pared with CNNs, the filters of these two models are more
interpretable, easier to learn, or learned for free.

Inspired by the scattering transform and PCANet, DCT-
Net was proposed in [13, 14, 15]. DCTNet uses a prefix co-
sine function as filter; this is an approximation of the eigen-
function used in PCANet. DCTNet performs multilayer short
time Discrete Cosine Transform (DCT). We investigate spe-
cially a two-layer DCTNet: a first DCT of the signal, and
then a second DCT on each frequency level output of the first
transform. Typical spectral feature representation for acoustic
feature such as short time Fourier transform, spectrogram and
linear frequency spectral coefficients (LFSC) can be related
to each layer’s output. As seen in [14], DCTNet output can
improve classification accuracy on whale vocalizations.

In this paper, we further investigate the theoretical prop-
erties of DCTNet. One useful feature that can be computed
from DCTNet is the sum over layers of the absolute value
square of the DCTNet output. We show that this feature func-
tion is of Cohen’s class of time-frequency distributions.

We also introduce two new extensions of the DCTNet
framework which lead to state-of-the-art results for audio
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classification. Firstly, inspired by constant-Q transforms, we
use geometrically spaced center frequencies, in order to make
DCTNet adaptive to different acoustic perception scales. We
developed A-DCTNet for audio signals classification, it can
better capture low frequency acoustic signal components that
are sensitive to human than DCTNet and MFCC. Experiments
on Artist20 [16] music data and bird song data show that,
with a standard linear SVM classifier, features obtained from
A-DCTNet improve classification rate over other features,
including Mel-Frequency Spectral Coefficients (MFSC) and
features obtained from the scattering transform.

Secondly, in order to make use of the sequential infor-
mation of audio signals, and extract the higher level audio
feature, we apply the Recurrent Neural Network (RNN) for
further audio feature exaction and classification. State of the
art classification accuracy is achieved in bird song data. This
shows that the modified DCTNet is a simple flexible and ef-
fective feature extractor for audio signal processing.

2. DCTNET

DCTNet is essentially a multilayer short time DCT [13,
14]. Similar to the short time Fourier transform, the short
time DCT can be expressed as [17]:

X(m, k) = [x ∗ (h · ck)](m)

where x is an input audio signal, h is a window function, and
ck are cosine functions. When ck are DCT-II functions,

X(m, k) =

N−1∑
n=0

x(n)h(n+m) cos

(
π

N
(n+

1

2
)k

)
,

whereN is the length of window, and k = 0, · · · , N−1. The
process of short time DCT can be viewed as a modulation of
bandpass filters to a signal.

A multilayer short time DCT can be expressed as:

X(m, k1, · · · , kr) = [x ∗ (h1 · ck1
) ∗ · · · ∗ (hr · ckr

)](m),

where r is the number of layers. Note that the whole opera-
tion is still linear. Choosing different window length in each
layer can highlight detailed energy distribution of signals in
the time-frequency plane, as shown in Figure 1. Because the
center frequencies in filterbanks are linearly spaced, the out-
put of a two-layer short time DCT is closely related to the
Linear Frequency Spectral Coefficients (LFSC) in acoustics.
DCTNet has been shown in [14] to improve classification ac-
curacy of underwater acoustic signals. A simple illustration
of a two-layer DCTNet is shown in Figure 1.

A DCTNet variant is used for image feature extraction,
applying 2D convolution, histograming and binary hash-
ing [15]. In contrast, we adopt DCTNet for acoustic signals,
using an entirely different post-processing strategy [13, 14].

Fig. 1. Two-layer DCTNet Process. The input is an oscillo-
gram of an acoustic signal. After convolving the signal with
DCT filterbanks, we have a short time DCT of the signal,
which is a two-dimensional representation. Each row of the
short time DCT is also a time series, convolving it with an-
other DCT filterbanks, then we have a short time DCT inside
a short time DCT. Summing the absolute value square of the
second layer’s outputs, we have a LFSC like feature of the
signal, and we use it for classification.

3. TIME-FREQUENCY ANALYSIS IN DCTNET

We first show that the output of the two-layer DCTNet is a
time-frequency distribution of Cohen’s class. From Section 2,
the two-layer DCTNet output is:

X(m, k1, k2) = [x ∗ (h1 · ck1
) ∗ (h2 · ck2

)](m).

Summing the absolute value square of the second layer’s
output, the DCTNet feature function F is:

F (m, k2) =
∑
k1

|[x ∗ (h1 · ck1
) ∗ (h2 · ck2

)](m)|2

If we want to express a similar expansion in the continuous
domain, for ω1, ω2 ∈ Rd, we pick h1, h2 ∈ S(Rd), x ∈
S ′(Rd). S(Rd) is the Schwartz class, and elements in the dual
space S ′(Rd) of S(Rd) are called tempered distribution [18].
x, h1, h2 are real, and h1, h2 are even functions. The process
can be expressed as

F (t, ω2) =

∫
Rd

|x(t) ∗ (h1 · cω1(t)) ∗ (h2 · cω2(t))|
2 dω1

where cω(t) = cos(2πωt). cω1 and cω2 are cosine functions
of the first layer and second layer respectively, and h1 and h2
are window functions of the first layer and second layer re-
spectively. Expanding the above expression, the cosine func-
tion integrates to a delta function. Since a cosine function can
be expressed as a summation of two exponential terms, the
above expression can be simplified as

F (t, ω2) =

∫ ∫
R2d

x(t− u)x(t− u′)φ(u, u′)e−j2πω2(u−u′)dudu′

+ its complex conjugate, (1)
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where φ(u, u′) = C ·
∫
Rd(h1(τ))

2h2(u− τ)h2(u′ + τ)dτ is
a kernel function, and C is some constant.

Applying a change of variables to the right hand side in
the above formula: t1 = t− u′ and t2 = t− u, we have∫ ∫

R2d

x(t1)x(t2)φ(t− t1, t− t2)e−j2πω2(t1−t2)dt1dt2

=

∫ ∫
R2d

x(t′ +
τ

2
)x(t′ − τ

2
)ψ(t− t′, τ)e−j2πω2τdt′dτ, (2)

where the kernel function is ψ(t1, t2) = φ(−t1−t22 , t1 −
t2) [19]. Eq. (2) is of Cohen’s class of time-frequency distri-
butions [20]. The Cohen’s class of time-frequency distribu-
tions are shift covariant. This means that they are especially
amenable to building invariant features by means of pooling.

Note that, given the linearity of scale of DCT filterbank,
the output of the second layer of DCTNet gives a linear fre-
quency spectrogram like feature [14].

4. ADAPTIVE DCTNET (A-DCTNET)

We extend DCTNet by making it adaptive to different
acoustic perception scales. In the constant-Q transform [21],
the center frequencies are logarithmically spaced. Such spac-
ing is similar to the human auditory perception system [22,
23]. The constant-Q transform has shown to be useful in au-
dio signal processing [24].

We define the adaptive short time DCT as

XCQT (m, k) =

N−1∑
n=0

x(n)hk(n+m) cos(πfk(n+
1

2
)/fs)

(3)

where fs is the sampling frequency, fk is a geometrically
spaced centered frequency given by

fk = f0 · 2
k
b , k = 1, 2, · · · ,K, (4)

b is the number of filters per octave, and K is the overall
number of frequency bins. In the constant-Q transform, the
Q factor, namely the ratio of center frequency to bandwidth,
is constant. The modified DCTNet is a multilayer modified
short time DCT.

With the frequency bins geometrically spaced, the two-
layer adaptive DCTNet has the output shown in Fig 2. We use
as an example a piece of classical music by Bach. Choosing
b = 12 for the first layer, and b = 6 for the second layer.
By adjusting the window function, the low frequency signal
components in A-DCTNet can be better captured than that of
MFSC in the plots.

5. RECURRENT NEURAL NETWORKS

We further extend A-DCTNet by combining it with Re-
current Neural Networks (RNN) [25, 26] in audio classifica-
tion task. RNN are known to be powerful models for captur-
ing features of sequential data. The process of RNN is shown

(a) Log-MFSC feature (b) The 2nd layer output of the A-
DCTNet

Fig. 2. Comparison of Log-MFSC feature and A-DCTNet
second layer output.

in Figure 3. In the figure, x = (x1, x2, · · · , xT ) is an input

Fig. 3. Process of RNN. x is the input sequential data, h is
the hidden units, and y is the label.

sequence, xt is an input at time step t. h = (h1, h2, · · · , hT )
is a hidden unit, ht is a hidden state at time step t, and y = yT
is the output. We recursively update the hidden unit state by
ht = g(ht−1, xt), where g(·) is an activation function. We
predict y from x through h: p((y|x) = p(yT |hT )). Feature
labels are then determined by p(y) = softmax(V · hT ).

6. EXPERIMENTAL RESULTS

6.1. Datasets

We use the Artist20 music data [16] and bird song data
collected by the Nowicki Lab at Duke University for experi-
ments. Artist20 is a database of six albums by 20 artists. Dif-
ferent artists have their own styles of performing and singing.
Artist20 has 1413 tracks, and each track is 30 seconds in
length. The sampling frequency of the original data is 44kHz.
Our goal is to identify the artists from the music.

For the bird song data, there are four types of bird songs,
and there are 200 tracks in total. The sampling frequency of
the data is 44kHz. Each piece of bird song lasts about 2-3
seconds. Our goal this time is to classify this bird songs.
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Table 1. Accuracy (%) of different feature sets for music
Feature set linear SVM (%) RNN (%)

A-DCTNet 2nd layer 45.23±1.34 79.11±0.11
Scattering transform 40.59±1.24 71.24±0.21

MFSC 32.16±1.43 75.09±0.21
LFSC 33.17±1.27 74.12±0.24

ERB scale 16.34±2.52 51.21±0.47
Baseline: MFCC+HMM 54.49

6.2. Classification results

We use features obtained from the two-layer A-DCTNet
and the scattering transform, and we make a comparison with
MFSC, LFSC and ERB-rate scale features, applying the lin-
ear SVM and RNN to classify the data. In the two-layer A-
DCTNet, we let the first layer and the second layer maximum
frequency be 5500Hz, and minimum frequency be 40Hz. The
major signal energy components are distributed in the 40Hz
to 5500Hz region. For the scattering transform feature, we
use the MATLAB toolbox [27] with time frame duration T =
125ms (or window size 256), and set Q1 = 8, Q2 = 1 to
best capture the acoustic signal information [11]. For MFSC,
LFSC and ERB rate scale features, we use a Hamming win-
dow of length 256, and step size 128 to create the spectro-
gram, then multiply the spectrogram with the filter bank func-
tion [28]. We extract 40 coefficients from each time frame,
and concatenate the coefficients along the time axis.

We use 80% of the music data and bird song data for train-
ing, and the rest for testing. The accuracy of different features
sets for classification of the Artist20 and bird song data are
shown in Table 1 and Table 2, respectively. The baseline ac-
curacy for the Artist20 identification is 54.49% [16], which
uses MFCC as features, and applies a Hidden Markov Model
(HMM) and a Gaussian Mixture Model (GMM) for classifi-
cation.

With linear SVM, A-DCTNet features improve classifi-
cation rate over other features. However, without using the
sequential information of audio signals, the overall classifi-
cation performance is not desirable for music data. In order
to improve classification accuracy, we incorporate the use of
RNN.

We use RNN with one hidden layer, and initialize all
recurrent matrices with orthogonal initialization. Non-
recurrent weights are initialized from a uniform distribution
in [−0.01, 0.01]. The experiments are implemented with
Theano [29]. When applying RNN, we divide each track of
music and bird song into small chunks. For music data, the
length of each chunk is 60, with overlap size 30. For the bird
song data, the length is 40 with overlap size 20.

The A-DCTNet achieves state-of-the-art results for bird
song classification, and improves identification accuracy for
the music Artist20 dataset. The two-layer A-DCTNet out-
performs all other methods using both classifiers, due to its

Table 2. Accuracy (%) of different feature sets for bird songs
Feature set linear SVM (%) RNN (%)

A-DCTNet 2nd layer 95.26±1.34 98.65±2.21
Scattering transform 91.42±2.24 94.64±2.42

MFSC 92.91±1.43 95.26±2.43
LFSC 90.17±2.77 95.12±2.22

ERB scale 86.34±2.22 92.73±2.31

increase ability to capture low-frequency acoustic informa-
tion. The main reason for the improved performance with
the RNN classifier is the capturing of sequential information
inherent in the signals. One possible further explanation for
the improve performance over the scattering transform is that
phase information is preserved in each layer of A-DCTNet. In
contrast, in the scattering transform, absolute values are taken
after each convolution in order to achieve translation invari-
ance.

7. CONCLUSION

In this paper, we analyze the time-frequency characteris-
tics of DCTNet, and show that the output of a two-layer DCT-
Net is of Cohen’s class of time-frequency distributions. We
propose an A-DCTNet which uses the idea of the constant-
Q transform, to make it adaptive for different acoustic per-
ception scales. With a standard linear SVM classifier, the A-
DCTNet improves classification accuracy over other features,
including MFSC and the scattering transform. The classifica-
tion accuracy can be further improved by using RNN, which
takes audio sequential information into consideration. With
the use of RNN, A-DCTNet achieves state-of-the-art in bird
song classification, and significantly improves classification
accuracy in music artist identification. Our results demon-
strate that A-DCTNet is a simple, flexible and effective fea-
ture extractor for audio signal processing.
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[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using RNN encoder-decoder
for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[27] J. Anden and S. Mallat, “Scatnet (v0.2),”
http://www.di.ens.fr/data/software/scatnet/, 2013.

[28] M. Brookes, VOICEBOX: a MATLAB toolbox for
speech processing, 2003.

[29] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good-
fellow, A. Bergeron, N. Bouchard, and Y. Bengio,
“Theano: new features and speed improvements,” Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop, 2012.

4003


