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ABSTRACT
Bivariate signals are commonly processed with the usual

Fourier transform, using methods such as the rotary spectrum
analysis. We show that bivariate signals can be efficiently
processed using the Quaternion Fourier transform. A bivari-
ate counterpart of the analytic signal is introduced, the quater-
nion embedding of a complex signal. It leads to identify natu-
ral parameters describing polarization properties, amplitude
and phase of the signal. The properties of the quaternion
short-term Fourier transform are studied and the polarization
spectrogram is introduced. A synthetic example illustrates the
relevance of the proposed approach.

Index Terms— bivariate signal, time-frequency analysis,
Stokes parameters, quaternion embedding, polarization spec-
trogram

1. INTRODUCTION

Bivariate signals are encountered in many applications, in-
cluding oceanography, radar, optics or acoustics. They de-
scribe motions in the 2D plane, meaning that a bivariate signal
can be represented as a time-evolving vector of R2 or equiva-
lently as the complex-valued signal x(t) = u(t) + iv(t).

Many authors have used augmented representations to
extract geometric or polarization properties [1–5] for non-
stationary bivariate signals. Bivariate extensions of the Em-
pirical Mode Decomposition have been proposed [6, 7], and
bivariate instantaneous moments have also been introduced
recently [8]. Existing methods rely on the use of the classical
complex Fourier Transform (FT). However the classical FT
of complex signals has no Hermitian symmetry, thus preclud-
ing the direct use of standard time-frequency tools such as the
analytic signal.

We show that the Quaternion Fourier Transform (QFT),
an alternate definition of the FT, makes it possible to extend
time-frequency representations in an elegant manner for bi-
variate signals. We define the quaternion embedding of a
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complex signal. It permits to identify instantaneous geometri-
cal parameters, amplitude and phase for simple (monocompo-
nent) signals. Then, using a Quaternion Short-Term Fourier
Transform (Q-STFT) a time-frequency representation of bi-
variate signals is introduced to process multicomponent bi-
variate signals. This Q-STFT yields to a well-defined spec-
trogram, where ridges carry instantaneous polarization prop-
erties. Section 5 illustrates the relevance of the approach on a
synthetic example.

The approach proposed in this article to analyze bivariate
signals is an alternative to the rotary spectrum analysis [4]. It
consistently generalizes known concepts from univariate non-
stationary signal processing. In addition, it provides geomet-
rical interpretation in a dedicated time-frequency representa-
tion, the polarization spectrogram.

2. QUATERNION FOURIER TRANSFORM OF
BIVARIATE SIGNALS

2.1. Quaternion algebra

The set of quaternions, denoted H forms a 4-dimensional al-
gebra with basis {1, i, j,k}, where i, j,k are imaginary units
such that i2 = j2 = k2 = −1. Fundamental relations are

ij = k, ij = −ji, ijk = −1, (1)

and subsequent cyclic permutations. Multiplication in H is
non-commutative, thus for p, q ∈ H, pq ̸= qp in general. Any
quaternion q can be written as

q = a+ bi+ cj + dk, (2)

with a, b, c, d ∈ R. The quaternion conjugate of q is q = a−
bi−cj−dk. Its modulus is |q|2 = qq = qq = a2+b2+c2+d2.
Involutions with respect to (w.r.t.) i, j,k are given by

qi = −iqi, qj = −jqj, qk = −kqk. (3)

We also introduce the combination between involution w.r.t.
j and conjugation like

q∗j
∆
= (q)

j
=

(
qj
)
= q = a+ bi− cj + dk. (4)

Quaternions encompass complex numbers. One can construct
complex subfields of H isomorphic to C, e.g. Ci = span{1, i}
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or Cj = span{1, j}. Polar forms of quaternions exist. A
particularly useful one is the Euler polar form [9]

q = |q| exp(iθ) exp(−kχ) exp(jφ), (5)

for q ∈ H and with (θ, χ, φ) ∈ [−π/2, π/2[×[−π/4, π/4]×
[−π, π]. Explicit decomposition is given in [9, 10]. More
about quaternions can be found in [11, 12].

2.2. Quaternion Fourier Transform

Let x ∈ L2(R,H). Its Quaternion Fourier Transform (QFT)
is given by

X(ω) =

∫
x(t) exp(−jωt)dt, (6)

whereas the inverse QFT reads

x(t) =
1

2π

∫
X(ω) exp(jωt)dω. (7)

The QFT differs from the standard Fourier transform in two
ways. The position of the exponential is crucial due to the
non-commutative product in H, with a right-sided convention
chosen here. The QFT has a different axis (here j instead
of i). The QFT defined in (6) inherits most properties of the
classical Fourier transform. Parseval and Plancherel’s theo-
rems exist, meaning that the QFT is an isometry of L2(R,H).
Gabor-Heisenberg uncertainty principle can be extended to
the QFT case. It highlights the fact that the QFT obeys the
same time-frequency localisation limitations as the classical
FT.

Bivariate signals can be represented as complex (Ci-
valued) signals. For such signals, the QFT has two important
properties. First, it gives a quaternion-valued spectral repre-
sentation, X(ω) ∈ H, to any complex signal. Second, the
QFT exhibits a particular symmetry

X(−ω) = −iX(ω)i = X(ω)
i
, (8)

called the i-Hermitian symmetry. These key properties are
detailed in [10].

3. QUATERNION EMBEDDING

3.1. Definition

The i-hermitian symmetry (8) of the QFT of complex signals
shows that negative frequencies carry no information about
the signal. It permits the construction of the quaternion em-
bedding of a complex signal, by simply suppressing negative
frequencies of the spectrum. The quaternion embedding of a
complex signal is

x+(t) = 2 · 1

2π

∫ +∞

0

X(ω) exp(jωt)dω, (9)

u

v

x(t) = u(t) + iv(t)

χ

θ

ϕ

•

|a| c
os
χ

|a| sin |χ|
	 χ > 0

� χ < 0

Fig. 1. Geometrical parameters of the bivariate signal x(t)
identified using the Euler polar form of its quaternion embed-
ding.

where the multiplicative factor 2 guarantees that x+(t) and
x(t) have the same energy. The quaternion embedding x+(t)
is a H-valued signal. It is a direct bivariate counterpart of the
usual analytic signal, constructed following the same lines.

3.2. Instantaneous amplitude, ellipticity and phase

A similar construction of x+(t) was described in [13], with
different definitions of instantaneous attributes. Here we pro-
pose to interpret x+(t) using its Euler polar form (5) which
reads:

x+(t) = a(t) exp[−kχ(t)] exp[jφ(t)] (10)

with a(t) ∈ Ci, χ(t) ∈ [−π/4, π/4] and φ(t) ∈ [−π, π].
This decomposition is unique. The original signal x(t) is sim-
ply recovered by projecting x+(t) onto Ci as

x(t) = a(t) [cosφ(t) cosχ(t) + i sinφ(t) sinχ(t)] . (11)

Eq. (11) is a direct bivariate analogue to the univariate AM-
FM model x(t) = a(t) cos[φ(t)]. The quaternion embedding
associates a canonical triplet [a(t), χ(t), φ(t)] to any com-
plex signal. This triplet can be interpreted under some usual
restrictions [14] adapted to the bivariate case. In brief, we as-
sume that φ(t) varies much faster than a(t) and χ(t) and that
x(t) is locally monochromatic.

The quantity φ(t) is called the instantaneous phase of
x(t), and its derivative φ′(t) is the instantaneous frequency.
Terms a(t) and χ(t) are respectively called the instantaneous
complex amplitude and the instantaneous ellipticity of x(t).

Fig. 1 depicts the ellipse traced out in time by the model
(11) when a(t) = a = |a| exp(iθ) and χ(t) = χ are con-
stant. The value of |a| scales the ellipse. The ellipse ori-
entation is given by θ, whereas its shape is controlled by χ.
For χ = 0, the ellipse becomes a line segment, whereas ex-
treme cases χ = ±π/4 describe a circle. The phase φ(t)
gives the instantaneous position of x(t) in the ellipse, while
the sign of χ gives the direction of rotation. When a(t) and
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χ(t) are slowly varying the ellipse depicted in Fig.1 becomes
an instantaneous ellipse. The ellipse parameters then mean-
ingfully describe the instantaneous polarization properties of
the non-stationary bivariate signal x(t).

The quaternion embedding suffers from the same limita-
tions as the analytic signal. The canonical triplet does not
provide useful information when the signal is multicompo-
nent. This limitation is now addressed using the Quaternion
Short-Term Fourier Transform (Q-STFT).

4. QUATERNION SHORT TERM FOURIER
TRANSFORM

Let g be a real and symmetric normalized window, with
∥g∥ = 1. For u, ξ ∈ R, its time-frequency shifted version is

gu,ξ(t) = g(t− u) exp(jξt). (12)

The functions gu,ξ(t) define time-frequency-polarization
atoms. The definition of gu,ξ is classical: the term polar-
ization solely indicates that the atoms are Cj-valued, rather
than Ci-valued. The resulting Q-STFT of x is given by

Sx(u, ξ) =

∫
x(t)g(t− u)e−jξtdt. (13)

The following fundamental theorem proves that the Q-
STFT is invertible and that energy related quantities are pre-
served. The proof of this theorem can be found in [10].

Theorem 1 (Inversion formula and energy conservation). Let
x ∈ L2(R,H). Then the inversion formula reads

x(t) =
1

2π

∫∫
Sx(u, ξ)gu,ξ(t)dξdu, (14)

and the energy of x is conserved,∫
|x(t)|2dt = 1

2π

∫∫
|Sx(u, ξ)|2dudξ, (15)

as well as the polarization properties of x:∫
x(t)x(t)

∗j
dt =

1

2π

∫∫
Sx(u, ξ)Sx(u, ξ)

∗j
dudξ. (16)

This theorem demonstrates two things. It extends clas-
sical results (see [15]), i.e. Eq. (14) and Eq. (15), to the
Q-STFT setting. Moreover Eq. (16) shows that another quan-
tity is preserved by the Q-STFT, related to the polarization
content or geometric content of the signal. The quantity
Sx(u, ξ)Sx(u, ξ)

∗j is called the polarization spectrogram
of x. It is H-valued and is closely related to Stokes param-
eters, widely used in optics to describe the polarization of
electromagnetic waves [16]. Namely one has

Sx(u, ξ)Sx(u, ξ)
∗j

= S1(u, ξ) + iS2(u, ξ)− kS3(u, ξ),
(17)

where S1, S2, S3 are three Stokes parameters. The last Stokes
parameter S0 is obtained by S0 =

√
S2
1 + S2

2 + S2
3 , which is

the usual spectrogram of x. These parameters are related to
the instantaneous complex amplitude and ellipticy the follow-
ing way

S0 = |a|2, S1 = |a|2 cos 2χ cos 2θ,

S2 = |a|2 cos 2χ sin 2θ, S3 = |a|2 sin 2χ, (18)

where the u, ξ dependence has been omitted for sake of sim-
plicity.

Two equivalent time-frequency-polarization representa-
tions are then possible. One can represent the usual time-
frequency energy density |Sx(u, ξ)|2, and obtain instan-
taneous orientation and ellipticity from the ridges of the
Q-STFT. Ridges are given by the local maxima of the time-
frequency energy density. The second representation is given
by the three time-frequency Stokes parameters S1, S2, S3

obtained from eq. (17). Both representations imply the
simultaneous inspection of three figures. These two repre-
sentations are equivalent. They are called the polarization
spectrogram of x(t).

The theoretical analysis of energy localization in the time-
frequency plane, the so-called ridge analysis, can be carried
out using classical techniques. Using an asymptotic approach
[17] it is shown in [10] that the Q-STFT concentrates on the
instantaneous frequency line ξridge(u) = φ′(u). Under mild
conditions, one has on the ridge

Sx(u, ξridge(u)) = x+(u)Corr
x
g(u) (19)

where the corrective factor Corrxg(u) takes values in Cj . Eq.
(19) shows that on the ridge the Q-STFT is simply given by
the quaternion embedding of the signal, up to a Cj-valued
corrective term on the right. It depends on the window g
and on the derivatives of the instantaneous frequency φ′(t).
Hence the polarization properties (instantaneous orientation
and ellipticity) of the signal are directly readable on the ridge.

5. EXAMPLES

Now, we illustrate the performances of the Q-STFT. A syn-
thetic bivariate signal x(t) is made of a superposition of three
components: a linear chirp with zero ellipticity and evolv-
ing orientation; a quadratic chirp of constant orientation and
changing ellipticity; a time-localized signal with constant el-
lipticity and orientation. The signal is defined for t ∈ [0, 1] by
N = 1024 equispaced samples. The Q-STFT is computed us-
ing a Hanning window of size 101 samples, providing a good
time-frequency resolution.

Fig. 2 depicts the two equivalent polarization spectro-
grams of x(t). Fig. 2a, 2b and 2c depict the three time-
frequency Stokes parameters. The three Stokes parameters
provide an interpretable view of time-frequency-polarization
properties of the three components of the signal. The Stokes
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Fig. 2. Synthetic signal and its two equivalent polarization spectrograms. (a), (b) and (c) Stokes parameters in the time-
frequency plane. (d) Time-frequency energy density (e) instantaneous orientation (f) instantaneous ellipticity on the ridges.

parameters S1, S2 and S3 have been normalized by S0, so that
they provide meaningful geometrical information. While S3

is directly an image of the ellipticity, the orientation has to be
recovered by simultaneously inspecting the three Stokes pa-
rameters, as shown by expressions in (18). One can see in fig.
2c the instantaneous ellipticity of each component, e.g. the
quadratic chirp is evolving from left-circular polarization to
right-circular polarization. The other two components show
constant ellipticity. The periodic alternation of colors due to
sign changes in S1, S2 in fig. 2a and 2b show that the linear
chirp component exhibits a rotating orientation.

Fig. 2d, 2e and 2f show the time-frequency energy den-
sity, instantaneous orientation and ellipticity, respectively.
The time-frequency energy density in fig. 2d also permits
the identification of the three components. By extracting the
ridge, one gets in fig. 2e, 2f the instantaneous orientation and
ellipticity of each component.

6. CONCLUSION

The proposed approach extends classical results to the case
of bivariate signals using the QFT, and is very general. For
monocomponent signals, we introduced the quaternion em-
bedding of a complex signal, which allows to identify in-
stantantaneous geometrical, amplitude and phase quantities.
Multicomponent signals were addressed using the Q-STFT.
An important theorem shows that the Q-STFT provides an
invertible representation and that both energetical and geo-
metrical quantities are preserved. This leads to the defini-
tion of a time-frequency representation with a strong physical
meaning, called the polarization spectrogram. Numerical im-
plementations are straightforward, of same complexity as the
standard FFT algorithm. The presented results have potential
applications in identification and separation of components in
bivariate signal processing.
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