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ABSTRACT
In close connection with time-frequency uncertainty rela-
tions, spectrograms are known to have some built-in redun-
dancy which constrains the landscape of their surface, thus
calling for simplified descriptions based on a reduced number
of salient features. This is investigated here in some detail
for spectrogram local maxima in the generic case of white
Gaussian noise. A simple model, based on a randomized
hexagonal lattice structure, is proposed for the distribution of
their time-frequency locations considered as realizations of
a 2D point process in the plane. While the rationale of the
model is discussed and its relevance tested, further consid-
eration is also given to the distribution of maximal values as
well as to that of zeros that can be inferred from the proposed
model.
Keywords — time-frequency analysis; reassignment; spec-
trogram; white noise; Voronoi diagram

1. MOTIVATION

The time-frequency (TF) analysis of signals can be performed
in many different ways, but spectrograms—i.e., squared mag-
nitudes of Short-Time Fourier Transforms (STFTs)—are cer-
tainly among the simplest and most popular tools for this pur-
pose. Whereas much is known about such transforms (see,
e.g., [4, 10, 16]), specific properties of some of their geomet-
rical attributes—in particular the distribution of their extrema,
be they local maxima or zeros—are still to be better under-
stood for a number of different reasons that can be listed as
follows:

1. It is first known that, in close connection with TF un-
certainty relations, spectrograms have some built-in re-
dundancy [10]. This is expected to constrain the land-
scape of the surface, thus calling for simplified descrip-
tions based on a reduced number of salient features that
might offer a data-driven, adaptive way of getting a
sparse representation of signals from a TF perspective.

2. More specifically, a suitable choice for the short-time
analysis window—namely that of a properly scaled
Gaussian function [2, 20]—happens to turn spectro-
grams into entire functions whose zeros can be used
for TF filtering, as it has been recently proposed [11].

3. Besides zeros, local maxima also play an important
role, especially with respect to improved versions of
spectrograms based on reassignment (see, e.g., [13] for
a survey), or on the closely related synchrosqueezing
technique [6]. In fact, it has been shown in [3] that,
under the above Gaussian assumption for the short-
time window, the reassignment field of a spectrogram
simply expresses as the gradient of a potential function
which identifies to the logarithm of the spectrogram
surface, with the consequence that reassignment tends
to concentrate the signal energy around local maxima.

Extrema (zeros and local maxima) constitute therefore a
very simplified description of a spectrogram that is yet ex-
pected to capture some significant information. The purpose
of this paper is to have a closer look at the geometry which
specifically governs the distribution of local maxima in the
TF plane.

2. STFT AND SPECTROGRAM

2.1. Definitions

Given a signal x(t) and a window h(t), both supposed to
belong to L2(R), the Short-Time Fourier Transform (STFT)
F

(h)
x (t, ω) will be here defined as the inner product between
x(t) and shifted versions (in time and frequency) of h(t):

F (h)
x (t, ω) = 〈x,Ttωh〉, (1)

where Ttω stands for the joint TF shift operator such that
(Ttωh)(s) = h(s−t) exp{iω(s−t/2)} [3]. The correspond-
ing spectrogram simply follows as:

S(h)
x (t, ω) =

∣∣∣F (h)
x (t, ω)

∣∣∣2 . (2)

2.2. Reproducing kernel, redundancy and uncertainty

While the STFT maps a 1D signal to a 2D function, any 2D
function cannot be guaranteed to be the admissible transform
of some signal. Indeed, STFTs—as well as the associated
spectrograms—inherit some specific structure from their def-
inition (1). More precisely, the STFT satisfies the identity:

F (h)
x (t′, ω′) =

∫∫ +∞

−∞
K(t′, ω′; t, ω)F (h)

x (t, ω) dt
dω

2π
, (3)
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in which the reproducing kernel K(t′, ω′; t, ω) is (up to a
complex-valued multiplicative term) nothing but the STFT of
the analyzing window:

K(t′, ω′; t, ω) ∝ F (h)
h (t′ − t, ω′ − ω). (4)

It follows that any STFT (or spectrogram) has necessar-
ily some local redundancy since the quantity (4) cannot be
arbitrarily peaked in both time and frequency, a result which
follows from general uncertainty relations (see, e.g., [22, 16]).
In the particular case of the (unit energy) Gaussian window1

g(t) = π−1/4 exp{−t2/2}, (5)

the so-called “Gabor’s logon” [15] which is known to mini-
mize classical measures of uncertainty [15] and is referred to
as circular since

K(t′, ω′; t, ω) ∝ exp

{
−1

4
((t′ − t)2 + (ω′ − ω)2)

}
, (6)

the reproducing kernel is maximally concentrated and defines
an influence domain which is itself circular.

3. SPECTROGRAM OF WHITE GAUSSIAN NOISE

3.1. Covariance structure

Following first investigations reported in [14], we will con-
centrate here on the specific case of white Gaussian noise
(wGn). Making use of noise as test signal is a convenient
way of accessing configurations with no prescribed structure.
It also allows to investigate the self-organizing properties of
“generic” spectrogram surfaces whose geometry reflects un-
certainty constraints.

Applying formally the definition (2) to zero-mean wGn
x(t), we readily get that:

E
{
S(h)
x (t, ω)

}
= γ0, (7)

whereas the covariance between spectrogram values at two
different locations in the TF plane only depends on the cor-
responding lags in both time and frequency, according to the
relation:

cov
{
S(h)
x (t, ω), S(h)

x (t′, ω′)
}

= γ2
0 S

(h)
h (t′−t, ω−ω′). (8)

In the specific case of the circular Gaussian window (5),
this covariance takes on the simple form

cov
{
S(g)
x (t, ω), S(g)

x (t′, ω′)
}

= γ2
0 exp

{
−1

2
d2(t, ω; t′, ω′)

}
(9)

where d(t, ω; t′, ω′) =
√

(t− t′)2 + (ω − ω′)2 measures the
Euclidean distance in the plane between the two considered
points, thus defining a second-order homogeneous (or station-
ary) field.

1In the Physics literature (see, e.g., [20]), the corresponding spectrogram
is referred to as the “Husimi distribution function” [18].

4. LOCAL MAXIMA AS A 2D POINT PROCESS

4.1. Heuristics

It follows from the elements above that, in the generic case
of wGn, the spectrogram of a realization should take on the
form of a random, yet homogeneous distribution of energy
“patches” whose extension, while fluctuating, is constrained
by the reproducing kernel of the analysis. The locations of
local maxima define therefore a collection of points in the
TF plane that can be considered as a realization of some
stochastic 2D point process. Given the covariance structure
(8), such a process is expected to exhibit a repulsive structure
and its characterization could therefore be envisioned within
the framework of the so-called “determinantal point pro-
cesses” [21, 23, 26]. We will however follow here a different
approach, whose main purpose is to propose a constructive
modeling that will eventually end up with the reported behav-
ior attached to the covariance structure.

As discussed in Sect. 2.2, Gabor’s logons (5) are elemen-
tary, minimum uncertainty, waveforms. They can therefore
be viewed as building blocks whose suitably shifted versions,
in both time and frequency, may add up to synthesize a more
complicated waveform according to the tentative model

x(t) =
∑
m

∑
n

xmn g(t− tm) ei(ωnt+ϕmn), (10)

where xmn is some random weight, xmn = {(tm, ωn);m,n ∈
Z} stands for the TF center of a logon g(t) in the plane, and
ϕmn for a possible phase term. It follows from this expansion
that the associated spectrogram reads

S(g)
x (t, ω) =

∣∣∣∣∣∑
m

∑
n

xmn F
(g)
g (ω − ωn, t− tm) eiϕmn

∣∣∣∣∣
2

.

(11)
In the specific case of wGn, the TF spectrum (7) is ex-

pected to be flat. Together with the homogeneity evidenced
by (9), this suggests some form of TF equidistribution for the
logons that appear in (11), i.e., an identical mean value for all
weights (E {xmn} = cst for any m and n ∈ Z) and a regular
lattice structure for the centers xmn. To this end, it is pro-
posed to choose a regular triangular lattice as a model, with
a rationale that can be qualitatively justified for at least two
complementary reasons:

1. As sketched in Figure 1-(a), given a logon centered
at some TF location, the circular structure of the co-
variance (8) suggests that (on average) a neighbouring,
independent logon is likely to show up anywhere on
the limiting circle from which the covariance can be
considered as negligible. Picking up at random such
a point, the same argument applies to the next neigh-
bours. Intersecting the two circles (see Figure 1-(b))
leads to logon TF centers located on the vertices of
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Fig. 1. Mean model for the TF locations of logon centers in
the case of wGn—Graphical heuristics (see text).

equilateral triangles and, proceeding further the same
way, the average distribution of logon centers is ex-
pected to form a regular triangular lattice (see Figure
1-(c)). As a companion argument, one can also remark
that, since individual logons concentrate most of their
energy in TF domains taking the form of circular disks,
organizing them on a regular triangular lattice corre-
sponds to maximum packing [5] (see Figure 1-(d)).

2. A by-product of such an organization over a regular tri-
angular lattice is that the associated Voronoi tessella-
tion [25] should take the form of a honeycomb structure
made of hexagons. This is amply supported by numeri-
cal experiments, as already mentioned in [14]: a typical
result, obtained with 1, 000 independent realizations of
wGn realizations of 2, 048 data points each, evidences
that the average number of edges of the Voronoi cells
centered on local maxima is 5.98, i.e., almost 6.

4.2. A randomized lattice model

Whereas the proposed model for the locations of the logon
centers takes on the form of a regular triangular lattice that is
deterministic, both the random nature of the phase references
and the partial overlap between neighbouring logon STFTs
introduce fluctuations whose outcome is that local extrema
do not coincide with logon centers. The simplest model we
can propose for taking into account such fluctuations is that
of a perturbation of the regular lattice, with random time and
frequency shifts that will be assumed to be i.i.d. Gaussian.

Building upon an approach outlined in [27], the relevance
of this model can be tested by evaluating the distribution of
nearest neighbour distances, as is commonly done for testing
a Poisson distribution [7]. More precisely, given a fixed point
arbitrarily chosen at the origin of the TF plane, the first step
requires the evaluation of the probability of finding one of its
6 nearest neighbours within a given distance. To do so, we can
first evaluate the probability that one of its neighbours lies at
a distance at least d from the origin. This simply reads

P1(d) = Prob{D > d} = 1−
∫∫

Ω

p(t, ω) dt dω, (12)

where Ω stands for the disk of radius d centered at the origin
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Fig. 2. Cumulative distribution of the TF distance to nearest
neighbour between spectrogram local maxima in the case of
wGn—Comparison between actual data and reference models
(see text).

of the plane and

p(t, ω) =
1

2πσ2
exp

{
− 1

2σ2

[
(t−m)2 + ω2

]}
(13)

if the Gaussian fluctuations—around the chosen node of co-
ordinates (m, 0)—are assumed to be of variance σ2 in each
direction. A change of variables to polar coordinates leads to:

P1(d) = 1−
∫ d

0

F (r;m,σ2)dr, (14)

with

F (r;m,σ2) =
r

σ2
exp

{
− 1

2σ2

(
r2 +m2

)}
I0

(rm
σ2

)
(15)

and

I0(x) =
1

2π

∫ 2π

0

exp{x cos θ}dθ (16)

the modified Bessel function of first kind [1].
If we further assume that the variance is small enough to

ensure that the nearest neighbour only comes from fluctua-
tions around the vertices of the first hexagon around the point
of reference, the total probability P6(d) that no neighbour can
be found at a distance of a least d from any given point of the
perturbed lattice can be approximated by P6(d) = (P1(d))

6,
thus leading to the final result:

Prob(D ≤ d) = 1−

(
1−

∫ d

0

F (r;m,σ2)dr

)6

. (17)

A simulation example is given in Figure 2, which com-
pares an actual distribution with its best fitted model accord-
ing to (17), the lattice fluctuation turning out to be such that
σ ≈ m/3.43. For a sake of comparison, the Figure also re-
ports the step distribution that would occur for a deterministic
lattice (i.e., when σ = 0), as well as the one which would
have resulted from a Poisson distribution with the same den-
sity (as expected from the independence assumption that can-
not be valid for spectrogram maxima, the Poisson model is
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Fig. 3. Locations of local spectrogram extrema in the case
of wGn—One of the 4 diagrams corresponds to actual data
whereas the 3 other ones result from the proposed model: who
is who is left to the reader’s appreciation (solution in [29]).0 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 4. Probability distribution of (mean normalized)
global and local spectrogram extrema in the case of wGn—
Comparison between actual data and Gumbel fits (logarith-
mic scale, dB units).

clearly ruled out). A visual illustration of the relevance of the
approach is given in Figure 3, in which some actual data is
proposed for an eyeballing comparison with 3 realizations of
the proposed model, as synthetized in a similar configuration.

4.3. More on spectrogram maxima

Up to now, we have only been concerned by the location of
spectrogram local maxima in the TF plane, and not by the
values that are taken on at those locations. In order to char-
acterize such values that are of importance too for a com-
plete description, one can make use of known general results
about the distribution of the periodogram ordinates of wGn
[8, 17, 19] to claim (and easily check) that spectrogram values
have an exponential distribution. The fact that spectrogram
values are identically distributed according to an exponential
law ends up with a Gumbel distribution of the form [9]:

p(x;µ, σ) =
1

σ
exp {z − ez} ; z = −(x− µ)/σ, (18)

for the fluctuations of the global maximum as well as for local
maxima, though with a larger (relative) variance in the latter
case. This is illustrated in Figure 4 on synthetic data resulting
from 5,000 realizations of wGn (each with 2,048 time sam-
ples), with all sequences of local maxima normalized to unity
in the mean (i.e., such that µ = 1). Plugging this result in
the logon-based model (10)-(11) leads to synthetic spectro-
gram models that compare very favorably with actual data, as
evidenced in Figure 5.
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Fig. 5. Spectrogram vs. synthetic models in the case of wGn—
One of the 4 diagrams corresponds to actual data whereas the
3 other ones result from the proposed model: who is who is
left to the reader’s appreciation (solution in [29]).

time

fre
qu

en
cy

spectrogram

time

fre
qu

en
cy

zeros (red) + max/Voronoi (black)

Fig. 6. Left: spectrogram of wGn. Right: local maxima (black
dots) and zeros (red dots), the latter ones turning out to be
mostly located on the edges of the Voronoi cells associated to
the former ones (black lines).

5. CONCLUDING REMARKS

In this study, a number of results have been reported concern-
ing the simplified description of spectrograms of wGn in ge-
ometrical terms, in particular with respect to the distribution
of local extrema for which a simple, yet effective model has
been proposed. Emphasis has been put here on maxima which
are of special importance in reassignment methods (as attrac-
tors and fixed points of the reassigment vector field [24]), but
zeros are known to be of importance too [11]. While zeros
clearly deserve further investigations that cannot be reported
here, it is worth noticing— as a brief remark—that geometri-
cal features of the distribution of zeros can be seen as a by-
product of the randomized lattice model proposed here. A
first illustration is given in Figure 6, in which zeros are shown
to be mostly located on the edges of the Voronoi cells attached
to local maxima. This, along with other features related to
spectrogram zeros that complete the present study, will be de-
tailed further elsewhere [12].
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