
SPARTA: SPARSE PHASE RETRIEVAL VIA TRUNCATED AMPLITUDE FLOW

Gang Wang1,2, Georgios B. Giannakis1, Jie Chen2, and Mehmet Akçakaya1
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ABSTRACT
A linear-time algorithm termed SPARse Truncated Ampli-

tude flow (SPARTA) is developed for the phase retrieval (PR)
of sparse signals. Upon formulating the sparse PR as a non-
convex empirical loss minimization task, SPARTA emerges as
an iterative solver consisting of two components: s1) a sparse
orthogonality-promoting initialization leveraging support re-
covery and principal component analysis; and, s2) a series of
refinements by hard thresholding based truncated gradient it-
erations. SPARTA is simple, scalable, and fast. It recovers
any k-sparse n-dimensional signal (k � n) of large enough
minimum (in modulus) nonzero entries from about k2 log n
measurements with high probability; this is achieved at com-
putational complexity of order k2n log n, improving upon the
state-of-the-art by at least a factor of k. SPARTA is robust
against bounded additive noise. Simulated tests corroborate
the merits of SPARTA relative to existing alternatives.

Index Terms— Nonconvex optimization, support recov-
ery, hard thresholding, linear convergence.

1. INTRODUCTION

Phase retrieval (PR) refers to recovering a signal only from
the magnitude of its Fourier (or any linear) transform. Such
a task emerges in various science and engineering applica-
tions ranging from X-ray crystallography, microscopy, to op-
tics as well as coherent diffraction imaging, where optical
detectors record only the light intensity but not the phase.
Oftentimes, the underlying signals are naturally sparse [1].
Enforcing sparsity constraints can also ensure uniqueness of
the discretized one-dimensional PR [2]. Different types of
measurement transforming systems have been employed, e.g.,
over-sampling Fourier, short-time Fourier, random Gaussian,
and coded diffraction patterns, to name a few; see [1] for a
contemporary review.

Past phase retrieval approaches can be grouped as convex
and nonconvex ones. The latter include the alternating projec-
tion algorithms such as Gerchberg-Saxon [3] and Fienup [2],
AltMinPhase [4], (S)TAF [5, 6, 7], PRIME [8, 9], and the
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Wirtinger flow (WF) variants [10, 11, 12] as well as trust-
region methods [13]. The convex ones rely on matrix lifting
to obtain semidefinite programming (SDP) based solvers such
as PhaseLift [14]. The SDP, AltMinPhase, and WF recovery
methods have been extended to PR of sparse inputs leading
to solvers abbreviated with CPRL [15], SparseAltMinPhase
(SAMP) [4], and thresholded WF (TWF) [16]. Specifically,
CPRL accounts for the sparsity using the `1 convex proxy of
`0-(pseudo) norm. The latter two are two-stage iterative alter-
natives involving a (sparse) initialization and successive re-
finements of the initialization. The greedy GESPAR approach
is based on fast 2-opt local search [17]. Based on noise-
less Gaussian random measurements, CPRL recovers any k-
sparse n-dimensional signal exactly from O(k2 log n) mea-
surements at computational complexity O(n3) [18]; while
SAMP and TWF require O(k2 log n) measurements and in-
cur complexity O(k3n log n) [4, 16].

Building on SAMP and TWF, we develop a novel linear-
time sparse PR algorithm, which we call SPARse Truncated
Amplitude flow (SPARTA). Adopting an amplitude-based
nonconvex formulation of sparse PR, SPARTA is a two-
stage iterative solver: Stage one first estimates the support
of the underlying signal, and solves a PCA with power iter-
ations restricted on the estimated support; while the second
stage iteratively refines the initialization with successive hard
thresholding based truncated gradient iterations. Both stages
are conceptually simple, scalable, and fast. Further, SPARTA
provably recovers any k-sparse signal x ∈ Rn/Cn (k � n)
with minimum (in modulus) nonzero entries on the order
of (1/

√
k)‖x‖2 from O(k2 log n) measurements at compu-

tational complexity O(k2n log n), which improves upon the
state-of-the-art by at least a factor of k. This advantage is cru-
cial in large-scale imaging applications, where the basis factor
n log n is large typically on the order of millions. Simulated
tests demonstrate markedly improved recovery performance
and speedups over the state-of-the-art algorithms.

The rest of the paper is outlined as follows. Section 2 re-
views the sparse PR and known necessary and sufficient con-
ditions for uniqueness. Section 3 details the two stages of the
SPARTA algorithm, which together with performance analy-
sis is summarized in Section 4. Finally, numerical results are
provided in Section 5, and conclusions are drawn in Section 6.
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2. SPARSE PHASE RETRIEVAL

Succinctly stated, the sparse PR (a.k.a., compressive PR) task
amounts to solving for a sparse x ∈ Rn (or Cn) a system of
phaseless quadratic equations of the form

ψi = |〈ai,x〉|, i = 1, . . . ,m, subject to ‖x‖0 = k (1)

where {ψi}mi=1 are the observed data, ai known sampling
vectors, and the sparsity level k � n is assumed to be known.
The data can be given in squared (a.k.a., intensity) form as
yi := ψ2

i = |〈ai,x〉|2. For concreteness, we focus on the
real-valued Gaussian design vectors ai ∼ N (0, In), that are
assumed independently and identically distributed (i.i.d.). It
has been established thatm = 2k generic measurements as in
(1) are necessary and sufficient for uniquely determining a k-
sparse solution in the real case, and m ≥ 4k−2 are sufficient
in the complex case [19]. In the noisy case, O(k log(n/k))
measurements suffice [20]. Assuming existence of a unique
k-sparse solution (up to a global sign), our goal is to design
simple yet effective algorithms to provably reconstruct x from
a small number (far less than n) of phaseless equations.

Adopting the least-squares criterion (which coincides
with the maximum likelihood one when the additive noise is
white Gaussian), the task of recovering a k-sparse solution
from phaseless equations reduces to that of minimizing the
following amplitude-based empirical loss function

minimize
‖z‖0=k

1

2m

m∑
i=1

(
ψi −

∣∣aTi z∣∣)2 (2)

where (·)T stands for transposition. It is clear that both the
objective function and the constraint are nonconvex, render-
ing problem (2) NP-hard in general and hence computation-
ally intractable. It is worth mentioning that TWF deals with
the intensity-based counterpart of (2), which was experimen-
tally shown to be less effective than the amplitude-based one
even when no sparsity was exploited [6]. Although focus-
ing on a formulation similar to (2), SAMP first estimates
the support of the underlying signal, and performs standard
PR of signals with reduced dimension k � n. Relying on
alternating minimization, it solves a series of least-squares
problems, hence requiring matrix inversion at each iteration.
Further, numerical tests suggest that a very large number of
measurements are required to estimate the support exactly.
Once wrong, SAMP confining the PR on the estimated sup-
port would be impossible to recover the underlying signal.
On the other hand, an adaptive thresholding procedure that
maintains only certain largest entries per iteration during the
gradient refinement stage turns out to be effective [16]. Both
SAMP and TWF were based on the spectral initialization,
which was later shown to be less accurate and robust than the
orthogonality-promoting initialization [6].

Broadening our TAF approach and TWF, the present pa-
per puts forth a novel linear-time solver of (2) that operates in

two stages: 1) a sparse orthogonality-promoting initialization
attainable by solving a PCA with simple power iterations on
an estimated support of the underlying sparse signal; and, 2)
which is refined by means of scalable truncated gradient iter-
ations, followed by a hard thresholding per iteration to set all
entries to zero except for the k ones of largest magnitudes.

3. SPARTA ALGORITHM

In this section, the two stages of SPARTA will be depicted in
detail. To start, define the distance from any estimate z to the
solution set {±x} as follows: dist(z,x) := min ‖z±x‖2 for
real-valued signals, where ‖·‖2 is the Euclidean norm. Define
the indistinguishable global phase constant in the real case as

φ(z) :=

{
0, ‖z − x‖2 ≤ ‖z + x‖2,
π, otherwise. (3)

Hereafter, assume x to be the solution to (1) with φ(z) = 0;
otherwise, one can replace z by zeiφ, but the constant phase
shift shall be dropped for notational brevity. Assume without
loss of generality ‖x‖2 = 1.

3.1. Sparse Orthogonality-promoting Initialization

The orthogonality-promoting initialization in [5, 6] builds
upon a fundamental characteristic in high-dimensional spaces,
where random vectors are almost always nearly orthogonal to
each other. The key idea is approximating the unknown x by
a vector z0 most orthogonal to a judiciously selected subset of
sensing vectors {ai}i∈I0 , where I0 ⊆ [m] := {1, 2, . . . ,m}
is some index set to be designed. It is known that the orthog-
onality between vectors can be captured by their (squared
normalized) inner-product given as (aTi x)

2/(‖ai‖2‖x‖2).
Thus, I0 collects the indices of ai’s having the |I0|-smallest
normalized inner-products with x [6]. Mathematically, the
orthogonality-promoting initialization method amounts to
solving a smallest eigenvalue problem

minimize
‖z‖2=1

zT Y z := zT
( 1

|I0|
∑
i∈I0

aia
T
i

‖ai‖22

)
z (4)

which entails a full eigen-decomposition of complexity
O(n3). Upon letting I0 be the complement of I0 in [m],
it holds that

∑
i∈I0

aia
T
i

‖ai‖22
=
∑
i∈[m]

aia
T
i

‖ai‖22
−
∑
i∈I0

aia
T
i

‖ai‖22
.

Appealing to the following standard concentration result∑
i∈[m]

aia
T
i

‖ai‖22
≈ m

n
In, (5)

the smallest eigenvalue problem in (4) can be approximated
as a largest eigenvalue (PCA-type) problem

z̃0 := arg max
‖z‖2=1

zT Y z :=
1

|I0|
zT
(∑
i∈I0

aia
T
i

‖ai‖22

)
z (6)

which can be solved with a few (e.g., 100) power iterations.
When ‖x‖ 6= 1, z̃0 can be scaled by the norm of x estimated
to be

√∑m
i=1 yi/m, thus yielding z0 =

√∑m
i=1 yi/m z̃0.
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When x is known to be k-sparse a priori, the same ratio-
nale as the orthogonality-promoting initialization would lead
to

minimize
‖z‖2=1

zT Y z subject to ‖z‖0 = k (7)

which, however, could not be readily converted to a (sparse)
PCA due to a limited number of data samples hardly to val-
idate (5). Instead of coping with (7), our approach is to first
estimate the support of the underlying signal with a well-
justified rule; followed by power iterations for the PCA prob-
lem [cf. (6)] on the estimated support to produce a k-sparse
z̃0 ∈ Rn; and, subsequently scaling z̃0 by

√∑m
i=1 yi/m to

yield the k-sparse orthogonality-promoting initialization z0.
The support recovery step is detailed next. To this end, as-

sume that x has support S ⊆ [n] := {1, . . . , n} with |S| = k.
Consider the random variables Zi,j = ψ2

i a
2
i,j , j = 1, . . . , n.

With E[a4i,j ] = 3, E[a2i,j ] = 1, and using the rotational invari-
ance property of Gaussian distributions, one arrives at

E[Zi,j ] = E[(aTi x)
2a2i,j ] = E[a4i,jx

2
j + (aT/jx/j)

2a2i,j ]

= 3x2j + ‖x/j‖22, ∀j ∈ [n] (8)

where x/j ∈ Rn−1 is obtained by removing the j-th entry
from x; and likewise for a/j ∈ Rn−1. If j ∈ S, then xj 6= 0
and E[Zi,j ] = ‖x‖22 + 2x2j ; and E[Zi,j ] = ‖x/j‖22 = ‖x‖22
otherwise. It is now clear that there is a separation in the ex-
pected values of Zi,j for j ∈ S and j /∈ S. If all E[Zi,j ] val-
ues are available, the indices corresponding to the k-largest
E[Zi,j ] values recover exactly the support of x. Neverthe-
less, E[Zi,j ] are not available. One has available a number of
their realizations instead. Leveraging the strong law of large
numbers, the sample average approaches the ensemble one,
namely, Ẑi,j := (1/m)

∑m
i=1 Zi,j → E[Zi,j ] as m increases.

Hence, the support can be estimated as

Ŝ :=
{
1 ≤ i ≤ n

∣∣indices of top-k instances in {Ẑi,j}nj=1

}
which will be shown to recover S exactly with high probabil-
ity when O(k2 log n) measurements are taken and the mini-
mum (in modulus) nonzero entry xmin := minj∈S |xj | is on
the order of (1/

√
k)‖x‖2.

When the estimated support is exact, one can rewrite ψi =
|aTi x| = |aTi,ŜxŜ |, where ai,Ŝ ∈ Rk includes the j-the en-

try of ai if and only if j ∈ Ŝ; and likewise for xŜ ∈ Rk.
Instead of seeking an n-dimensional initialization directly,
one can first apply the orthogonality-promoting initialization
steps in (4)-(6) on the data {(ai,Ŝ , ψi)}mi=1 to produce a k-
dimensional vector

z̃0
Ŝ
:= arg max

‖zŜ‖2=1

1

|I0|
zT
Ŝ

(∑
i∈I0

ai,Ŝa
T
i,Ŝ

‖ai,Ŝ‖22

)
zŜ (9)

and reconstruct a k-sparse n-dimensional initialization as z̃0

by zero-padding z̃0
Ŝ

at entries with indices not in Ŝ. Likewise
for the case of ‖x‖ 6= 1, set z0 =

√∑m
i=1 yi/m z̃0.

Algorithm 1 SPARse Truncated Amplitude flow (SPARTA)

1: Input: Data {(ai;ψi)}mi=1 and sparsity level k; maxi-
mum number of iterations T = 1, 000; step size µ = 1,
truncation thresholds |I0| = d 16me,

1 and γ = 0.7.
2: Set Ŝ to include indices corresponding to the k-largest

instances in {(1/m)
∑m
i=1 ψ

2
i a

2
i,j}nj=1.

3: Evaluate I0 to consist of indices of the top-|I0| values in{
ψi/‖ai,Ŝ‖2

}m
i=1

; and compute the principal eigenvec-

tor z̃0
Ŝ

of 1

|I0|

∑
i∈I0

ai,ŜaT
i,Ŝ

‖ai,Ŝ‖22
using 100 power iterations.

4: Initialize z0 as
√∑m

i=1 ψ
2
i /m z̃0, where z̃0 is obtained

by augmenting z̃0
Ŝ

with zeros at entries not in Ŝ.
5: Loop: For t = 0 to T − 1

zt+1 = Tk
(
zt − µ

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai

)
where It+1 :=

{
1 ≤ i ≤ m

∣∣|aTi zt| ≥ ψi/(1 + γ)
}

.
6: Output: zT .

3.2. Thresholded Truncated Gradient Stage

Upon obtaining a sparse orthogonality-promoting initializa-
tion z0, our approach to solving problem (2) amounts to iter-
atively refining z0 with truncated gradient iterations followed
by a k-sparse hard thresholding per iteration, namely,

zt+1 := Tk
(
zt − µ∇`tr(zt)

)
, t = 0, 1, . . . (10)

where t is the iteration index, µ > 0 a constant step size,
and Tk(u) a hard thresholding operation setting all entries in
u ∈ Rn to zero except for k entries of the largest magnitudes.
The truncated gradient∇`tr(zt) is given by

∇`tr(zt) :=
1

m

∑
i∈It+1

(
aTi z

t − ψi
aTi z

t

|aTi zt|

)
ai (11)

where the index set is defined as

It+1 :=
{
1 ≤ i ≤ m

∣∣|aTi zt|/|aTi x| ≥ 1
/
(1 + γ)

}
(12)

for some γ > 0 depending on the sparsity level k. The trunca-
tion rule (12) developed in [6] was shown capable of remov-
ing most ‘bad’ gradient components involving wrongly esti-
mated signs, i.e., aT

i zt

|aT
i zt| 6=

aT
i x

|aT
i x| . Moreover, this regulariza-

tion maintains only large enough |aTi zt| terms, hence protect-
ing the objective function in (2) from being non-differentiable
at zt and simplifying the theoretical analysis [6].

4. MAIN RESULTS

The SPARTA solver is summarized in Algorithm 1 with sug-
gested parameter values. Assuming independent data samples
{(ai;ψi)}, the following result establishes theoretical perfor-
mance of SPARTA.

1The symbol d·e is the ceiling operation returning the smallest integer
greater than or equal to the given number.
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Theorem 1 (Exact recovery). Let x ∈ Rn be any k-sparse
(k � n) signal vector with the minimum nonzero entry on
the order of (1/

√
k)‖x‖2. Consider the measurements ψi =

|aTi x|, where i.i.d. {ai}mi=1 ∼ N (0, In). With a constant
step size µ ∈ [µ, µ], and a truncation threshold γ = 0.7,
successive estimates of SPARTA in Algorithm 1 satisfy

dist
(
zt,x

)
≤ (1/10) (1− ν)t ‖x‖2 , t = 0, 1, . . . (13)

which holds with probability exceeding 1 − c1me−c0k −
7/m provided that m ≥ C0|I0| ≥ C1k

2 log n. Here,
c0, c1, C0, C1, µ0 > 0, and 0 < ν < 1 are some universal
constants.

Proof of Thm. 1 can be found in our journal version [?].
Regarding Thm. 1, three observations are in order.
Remark 1. SPARTA recovers any k-sparse solution x of
large enough minimum nonzero entries exactly when m ≥
C1k

2 log n for some constant C1 > 0, which coincides with
those required by the CPRL, SAMP, and TWF approaches.
Remark 2. SPARTA converges exponentially fast to x with
convergence rate independent of n. In other words, fixing
any ε > 0, after running at most log(1/ε) iterations (10), the
current estimate zt is at most ε‖x‖2 away from x.
Remark 3. SPARTA enjoys low computational complexity
O(k2n log n), and running time of O(k2n log n log(1/ε)) re-
quired to achieve an ε-accurate solution, which is proportional
to the time O(k2n log n) taken to read the data.

Besides exact recovery in the absence of noise, it is also
worth mentioning that SPARTA can be shown to be robust to
additive noise, especially when it has bounded values.

5. SIMULATED TESTS

Numerical tests evaluating performance of SPARTA relative
to TAF [6] (no sparsity is exploited) and TWF [16] are pre-
sented next. For fairness, all parameters involved in each
scheme are set to their default values. The initialization was
obtained with 100 power iterations, and was refined by T =
1, 000 gradient iterations. For reproducibility, the Matlab im-
plementation of SPARTA is publicly available. 2

The first experiment evaluates the exact recovery per-
formance of various approaches in terms of the empirical
success rate over 100 Monte Carlo trials, where a suc-
cess is declared for a trial if the returned estimate incurs a
Relative error := dist(zT ,x)/‖x‖2 less than 10−5. Curves
in Fig. 1 clearly demonstrate markedly improved perfor-
mance of SPARTA over state-of-the-art alternatives. Even
when the exact number of nonzeros in x is unknown, taking
k as an upper limit on the theoretically affordable sparsity
level (e.g., d

√
ne when m is about n according to Thm. 1)

works well too (see the blue curve). Comparison between
TAF and SPARTA shows the advantage of exploiting sparsity
in sparse PR settings.

2http://www.tc.umn.edu/˜gangwang/SPARTA/.
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Fig. 1: Empirical success rate versus m/n for x ∈ R1,000

with 10 nonzero entries using: i) TAF without exploiting spar-
sity [6]; ii) TWF [16]; iii) SPARTA0 with the exact number of
nonzeros unknown, and k taken as an upper limit d

√
ne = 32;

and iv) SPARTA with k = 10.

The second experiment tests the capability of SPARTA in
recovering signals of various sparsity levels. Figure 2 depicts
the empirical success rate versus the sparsity level k/n, where
k equals the exact number of nonzeros in x. Apparently, us-
ing m = n magnitude-only measurements (in which TAF
would fail), SPARTA significantly outperforms TWF, and it
ensures exact recovery of sparse signals with up to about 25 <√
n ≈ 32 nonzero entries, hence justifying our analytic re-

sults. Regarding running times, SPARTA converges much
faster than TWF and TAF in all reported experiments.
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Fig. 2: Empirical success rate versus k/n for x ∈ R1,000 with
m = n fixed using: i) TAF; ii) TWF; and iii) SPARTA.

6. CONCLUDING SUMMARY

This paper developed SPARTA for solving PR of sparse sig-
nals, building on two main components: A sparse orthogonality-
promoting initialization attainable by solving a PCA with
simple power iterations on the estimated support; followed
by successive refinements of the initialization via scalable
hard thresholding based truncated gradient iterations. Sim-
ulated tests corroborate markedly improved performance of
SPARTA relative to state-of-the-art algorithms.
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