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ABSTRACT

Matrix Completion (MC) i.e., estimating the missing val-
ues of an unknown matrix based on limited information, has
been a prominent topic of study in the last decades. In this
paper, we focus more precisely on a little-known aspect of
MC, namely how the recommendation of new entries can
help improve the accuracy of the reconstruction. We present
an efficient online algorithm to solve the MC task, and pro-
pose an Adaptive Sampling under Smoothness Assumption
(AdSSA) strategy, which is suitable for operation on smooth
low-rank matrices. This technique is able to predict itera-
tively which entries are the most informative. Our numerical
examples illustrate that AdSSA performs significantly better
than the Uniform Random Sampling (URS) and the Query
by Committee (QbC). In addition, AdSSA algorithm can
be straightforwardly implemented in an online and efficient
manner, which constitutes another advantage.

Index Terms— matrix completion, adaptive sampling,
online algorithms.

1. INTRODUCTION AND RELATED WORK

Matrix Completion has attracted considerable interest in the
last decades. This problem occurs in many scenarios, such
as : recommender systems, image inpainting, network mon-
itoring, video denoising. The exact MC problem has been
treated successfully in the seminal work of [1]. This work
proposes a very interesting relaxation of the classical (non-
convex, NP-hard) rank minimization problem into a (convex)
nuclear norm minimization problem, which has been widely
used since. Following this breakthrough, many methods have
been proposed to complete matrices when all the training
data become available simultaneously. Among them we find
mainly: spectral methods relying on SVD [2, 3], and matrix
factorization methods [4]. Moreover, models are now able
to incorporate more and more complex constraints: affine
constraints [5], graph constraints [6], interval uncertainty [7],
to name a few.

With the recent and spectacular increase in data volumes,
there has been an important focus on tackling the MC prob-
lem in an online manner, i.e., updating the estimate when
some matrix coefficients, that were previously unknown, are

sequentially revealed, so as to avoid doing all the computa-
tions from scratch. The most common approach considers
that the columns of the matrix to be completed arrive one by
one, from left to right, with missing entries. Then, the task
mainly consists in online subspace estimation. Numerous pa-
pers took this approach to solving this problem. These were
initiated by different communities : online dictionary learn-
ing [8], online PCA [9], online non-negative matrix factor-
ization [10, 11], just to name a few. However, when the new
uncovered entries are randomly located, the online problem
becomes more difficult and can’t be treated with the previous
column-by-column approach. [12] develops an algorithm that
addresses this problem with a systematic update of the rank k
decomposition.

Another practical topic of interest in the study of MC
concerns the sampling strategy [13]. In most real life appli-
cations, we have the possibility to recommend entries that
will be observed next, e.g., in collaborative filtering [12] or
wireless network coverage maps [14]. So far it remains rather
unclear how the choice of those entries can influence the ac-
curacy and help getting a better reconstruction of the ground
truth matrix. Previous work proposed a technique named
Query by Commitee (QbC), which utilizes different models
to find the predicted entries that present the highest degree of
disagreement and recommend them next [15]. A drawback of
this method is that it is computationally demanding.

The main contribution of this work, the focus of which is
adaptive sampling for online matrix completion, is twofold.
First, we propose a novel adaptive sampling rule. With the
same number of new entries, this method outperforms Uni-
form Random Sampling (URS) and QbC in terms of accuracy
of the reconstruction. Unlike previous methods [14] it does
not require the simultaneous training of several models, and
thus allows for real-time recommendations. We show exper-
imentally the benefit of this approach for the coverage map
reconstruction problem. The second contribution is that we
properly reformulate the algorithm presented in [16] so that
to be able to operate in an online fashion.

The remainder of this paper is organized as follows. In
Section 2 we introduce the notations and the online matrix
completion algorithm. Section 3 is devoted to the presentation
and justification of the adaptive sampling strategy. Section 4
presents the numerical experiments: we describe the proto-

3969978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Table 1. Alternating Least Squares for Matrix Completion
Initialize:
Ω observed entries
XΩ values of observed entries
U ∈Mm,k(R) randomly initialized

Repeat:
1: fix U and update

V = arg min
V

∑
(i,j)∈Ω

(
Xij − uivT

j

)2
+ γ

∑
j ‖vj‖22

2: fix V and update
U = arg min

U

∑
(i,j)∈Ω

(
Xij − uivTj

)2
+ γ

∑
i ‖ui‖22

col used to conduct our simulations, and the results. Finally,
Section 5 concludes the paper and discusses future work.

2. ONLINE MATRIX FACTORIZATION

2.1. Problem statement

As stated in the introduction, matrix completion is a well stud-
ied problem and many formulations have been proposed in
the literature to address it. First let’s introduce some nota-
tions. Throughout the paper,Mm,n(R) is the set of matrices
of size m × n with real coefficients. We consider a matrix
X ∈ Mm,n(R) and denote by Xij the coefficient in the ith

row and jth column. The set of observed entries (the mask) is
denoted by Ω. We adopt the matrix factorization framework:
our aim is to find a good low rank decomposition UVT that
approximates X, where U ∈ Mm,k(R) and V ∈ Mn,k(R).
In addition, let ui (resp. vj) be the ith row of U (resp. jth row
of V). More precisely we consider the following objective:

min
U,V

∑
(i,j)∈Ω

(
Xij − uivTj

)2
+ γ

∑
i

‖ui‖22 +
∑
j

‖vj‖22

 .

(1)
with γ being a regularization parameter that controls the
tradeoff between the closeness to data and the nuclear norm
of the reconstructed matrix [4]. Note that k is not known
in advance and has to be fixed arbitrarily. In practice a grid
search is used to find a value that meets simultaneously good
accuracy (k rather large) and computational efficiency (k
rather small).

A common approach to solve (1) is Stochastic Gradient
Descent (SGD), popularized by [17] in the context of the Net-
flix prize. It is well known to be a fast algorithm in large scale
settings. However, as pointed out in [16], it requires a tedious
tuning of the learning rate. To avoid this, we resort to another
method called Alternating Least Squares (ALS) [18].

2.2. Alternating Least Squares

Alternating Least Squares is a two-step iterative method, de-
scribed in Table 1. If we study more carefully the first step
(the second step follows the same logic), we have to solve a
quadratic program :

min
V

∑
j

 ∑
i st.(i,j)∈Ω

(
Xij − uivTj

)2
+ γ‖vj‖22

 . (2)

This amounts to solving n least-squares problems to find
the optimum solution for each row of V:

vp =

 ∑
i st.(i,p)∈Ω

(
uT
i ui + γIk

)−1 ∑
i st.(i,p)∈Ω

Xipui (3)

where Ik is the k×k identity matrix. The computation of each
vp is dominated by the matrix inversion, hence a global cost
of O(nk3) operations. This may become prohibitive if the
parameter k is large. However [16] proposed an approximate
accelerated method : instead of computing the optimum vec-
tor vp directly, we update its coefficients one by one. A single
update only consists in putting the derivative of (2) with re-
spect to Vpl to zero and is given by :

Vpl =

∑
i st.(i,p)∈Ω

(∑
m6=l UimVpm − Xip

)
Uil∑

i st.(i,p)∈Ω U2
ip + γ

. (4)

The expression for Up′l′ is similar. Although it is an ap-
proximation of the optimal solution given by (3), it reduces
the overall computation time of one main loop to O(|Ω|µ̄k)
where µ̄ is the average number of samples per row/column.
For sparse datasets the improvement in terms of speedup is
significant, while preserving good estimation of the optimum
according to [16]. Most of the time, ALS is terminated when
a given number of iterations of the main loop is reached (e.g.,
1000).

2.3. Online version

Suppose that we have already found the optimum solution to
equation (1) : U∗,V∗. If we observe a new entry (i0, j0),
recomputing the MC from scratch is by no means efficient.
Instead, it is quite intuitive that the new solution should be
close to U∗,V∗. Moreover, equation (4) shows that, with our
model, in first approximation, i.e., a single pass update over
the coefficients of U and V, only vectors ui0 and vj0 should be
impacted by the observation of the new entry Xi0j0 . This idea
is very popular among the recommender systems community
when it comes to efficient online updates [12]. Thus, in our
experiments to come, each time a new entry is observed, we
perform the online update as presented in Table 2.
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Table 2. Online Update
Initialize:
Ω observed entries
(i0, j0) new entry
XΩ,Xi0,j0 values of observed entries + new entry
U,V decomposition obtained at previous step

Do:
Ω← Ω ∪ (i0, j0)
update vj0 according to (4) and similarly for ui0 .
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Fig. 1. Berlin Coverage Map, from the Momentum Project.

3. ADAPTIVE SAMPLING STRATEGY

In the sequel we assume that the matrix we want to complete
is smooth. Namely, if two entries (i1, j1), (i2, j2) are such
that |i1− i2| ≤ 1 and |j1− j2| ≤ 1, then |Xi1j1 −Xi2j2 | ≤ ∆
for some small positive number ∆. From an image process-
ing perspective, it actually constrains the variation of intensity
from a pixel to any of its neighbors. It could also be seen as
a condition on the Lipschitz constant of the gradient. In that
sense, it is rather restricted to matrices that represent images.
In Figure 1(a) we give a concrete example to illustrate our
point. It consists of a coverage map i.e. a set of radio mea-
surements over a discretized geographical area. The smooth-
ness assumption is especially relevant in this context, as the
intensity of radio signals slowly decreases with the distance
to the base stations.

Now consider the 2-dimensional filtering X̃ of the original
image X by the following kernel:

f =
1

9

−1 −1 −1
−1 8 −1
−1 −1 −1

 .
In image processing, this filtering is known as an edge

detection operator. The data smoothness implies that the co-
efficients of X̃ should be relatively small, more precisely, for
each set of indices (i, j) : |X̃ij | ≤ 8

9∆.
Figure 1(b) shows the image corresponding to |X̃| for the

coverage map. We see that apart from very few points of in-
terest in the relief, the values of the pixels are close to zero.
In this example, less than 0.5% of the entries have absolute

Table 3. Adaptive sampling under smoothness assumption
Initialize:

Y Current Solution of the MC,
Ω observed entries,
N size of the mini-batch

1: Compute Ỹ = 2d-filter(Y, f)

2: Sort the entries of Ỹ in descending order and return the indices
of the N largest entries (in absolute value) that are not in Ω.

values greater than 10, so the smoothness assumption approx-
imately hold for ∆ = 10.

Let us define as Y our current estimate of the incompletely
observed matrix X. Our claim is that, if we want to improve
the reconstruction with new samples, we have to pay more
attention to the entries (i, j) for which |Ỹij | is large. To
understand why, recall that the filtering presented here is a
bounded linear operator: there exists a constant M such that
‖Z̃‖ ≤ M‖Z‖ for any matrix Z ∈ Mm,n(R). Hence, if
the reconstruction is close enough to the original matrix, we
should have : ‖Ỹ − X̃‖ ≤ M‖Y − X‖ ≤ ε for some small
ε. We are in finite dimension so we can choose ‖ · ‖ to be
the infinity-norm. Thus, by triangular inequality, we have the
following constraint on every coefficient Ỹij :

|Ỹij | ≤ |Ỹij − X̃ij |+ |X̃ij | ≤ ε+
8

9
∆.

As announced, the coefficients of Y should be small. If,
on the contrary, |Ỹij | is large (typically larger than ∆), it indi-
cates that |Ỹij − X̃ij | is also large i.e. our MC algorithm fails
at predicting the correct values in the vicinity of point (i, j).
So it is relevant to ask for further information at this location.
Following this principle, we propose the rule in Table 3 to se-
lect a mini-batch of N unknown entries that should enhance
the prediction.

4. SIMULATIONS

In this section we perform experiments to show the benefit of
our AdSSA strategy compared to URS and QbC.

The global idea of QbC is to quantify the uncertainty of
prediction using several different models for solving the same
task [15]. For each coefficient of the matrix, we define a
global level of disagreement between the models. Then, the
entries with the highest disagreement are recommended. We
refer the reader to [14] for more details on this rationale in the
case of the MC task. In this paper, we have used our algorithm
and two more schemes:

• SVT: the well-known Singular Value Thresholding al-
gorithm [5]
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• KNN Regression: for each missing entry (i, j), the
predicted value is a weighted average of the ith coef-
ficients of the K columns that are the closest to the jth

column. We took K = 5 in the sequel.

In all experiments we consider the pathloss map of Berlin,
originating from the data of the Momentum project (Figure
1(a)): it is a 150× 150 gray-scale image, with values ranging
from 70 to 150. To assess the quality of reconstruction, we
use the Normalized Mean Squared Error (NMSE), defined as
follows :

NMSE =
‖X− Y‖2F
‖X‖2F

(5)

where X is the ground truth matrix with all coefficients and Y
the prediction we want to test.

In the first experiment, 2000 entries (around 8% of the
data) are measured uniformly at random and a first estimate is
computed with our MC algorithm. Then we let the size of the
mask grow progressively: at each time step, we selectN = 20
entries that will be incorporated to the model, according to
the different strategies. AdSSA is confronted with URS and
QbC. We found parameters k = 6 and γ = 2 to yield good
results for the current dataset. Figure 2 shows the evolution of
the NMSE with those values. It is clear that AdSSA permits a
much faster reduction of the error than URS. For instance 100
well chosen entries give the same accuracy as 1000 randomly
chosen entries. It also performs slightly better than QbC. The
areas recommended by AdSSA allows for improved accuracy
of the reconstruction.

Two important remarks about the online and computa-
tional aspects of this simulation: first, since we recommend
entries at each time step, this is likely to be much more ef-
ficient than using a single (large) batch of equivalent size.
As a matter of comparison, with 3000 entries, the NMSE
reaches 1.18 × 10−4 at the end, whereas a single batch gives
1.86×10−4. Secondly, this method requires constant updates
of the MC solution. These are accomplished efficiently thanks
to our online algorithm. At the same time, the cost of the edge
detection filtering is about O(nm) operations and thus rea-
sonable (same order of magnitude as the MC update). How-
ever, because kNN and SVT are offline methods that must
be retrained at each iteration, with a very high computational
cost, it is impractical to use QbC in this context. For the pur-
pose of comparison we have "emulated" an online process but
in fact QbC had to be recomputed from scratch at each time
step (hence the dotted line on Figure 2). Even on this small
dataset, this "online QbC" took one day of computation on a
standard desktop computer with CPU 2.60 GHz and 8.00 GB
RAM (less than a minute for AdSSA with the same config-
uration). This highlights another advantage of AdSSA over
QbC : scalability.

To compare AdSSA and QbC on an equal footing, we
consider the possibility of recommending one single batch
of data. As previously we start with 2000 observed entries

Number of observed entries
2000 2200 2400 2600 2800 3000

N
M

S
E

10-4

10-3

10-2

AdSSA
URS
QbC

Fig. 2. Comparison of AdSSA, URS and QbC in an online
manner. The evolution of the NMSE with respect to the num-
ber of observed entries.
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Fig. 3. Comparison of AdSSA, URS and QbC in an offline
manner. The NMSE for different sizes of the batch of recom-
mended entries.

and recompute the MC solution with a certain amount of rec-
ommended entries. Figure 3 presents the NMSE for differ-
ent sizes of the batch. Even in this case, AdSSA does sig-
nificantly better than QbC, especially when we recommend
many entries : when the batch size is larger than 2000, QbC
is beaten by URS whereas AdSSA still outperforms URS.

To sum up, AdSSA yields very good recommendations to
help improve accuracy of the MC task. It outperforms URS
and QbC in terms of accuracy and, unlike QbC, it is an online
method, which gives all the more freedom and flexibility in
the sampling. In particular we can easily recommend small
batches one at a time.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient online MC al-
gorithm, together with a new adaptive sampling strategy to
improve accuracy of the reconstruction. It has been success-
fully applied to the coverage map completion problem, out-
performing both naive URS and QbC in terms of accuracy.
To the best of our knowledge it is also the first attempt to
provide online recommendations with practical run time. The
only assumption necessary for AdSSA is the smoothness of
the data matrix. Future directions of work involve general-
ization of this result to other types of matrices (with adapted
kernels).
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