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ABSTRACT

Sparse Bayesian learning is a sparse processing method used
for solving high-dimensional, underdetermined linear equa-
tions. Often the sensing matrix in the system of equations is
assumed known and in presence of perturbations in this ma-
trix performance of sparse processing degrades. We develop
a sparse Bayesian learning method that accounts for pertur-
bations in the sensing matrix. We derive an iterative weight
update by performing evidence maximization. Beamforming
simulations are used to demonstrate the advantages of the pro-
posed method.

Index Terms— Sparse Bayesian learning, compressed
sensing, sensing matrix uncertainty, beamforming

1. INTRODUCTION

Many interesting research problems can be formulated as a
system of high-dimensional, underdetermined, linear equa-
tions whose solutions are sparse. Recent advances in statis-
tics have produced various methods to solve for sparse so-
lutions in a feasible way. Some of these methods are basis
pursuit [1, 2], matching pursuit, and sparse Bayesian learning
(SBL) [3]. Among these, matching pursuit is a fast but greedy
method. Basis pursuit involves numerically solving a convex
optimization problem and can be computationally expensive.

Recent literature [3,4] has focussed on SBL and its appli-
cations [5–8]. SBL is computationally much faster than basis
pursuit and has good performance among various sparse pro-
cessing methods [9]. SBL takes a probabilistic approach to
solve the system of linear equations and obtains a sparse so-
lution which maximizes the evidence.

Most of the existing literature on sparse processing as-
sumes that the sensing matrix is deterministic and completely
known. This is not feasible in many practical applications,
some of which include beamforming [10, 11] and matched-
field processing [12, 13]. Uncertain sensing matrices have
been studied in the context of basis pursuit [14, 15], match-
ing pursuit [16] and message passing [17]. A recent work
discussed robust SBL [18] to account for outliers in the sig-
nal.

We derive iterative update equation for a SBL method
which accounts for uncertainty in the sensing matrix. The
statistics of the sensing matrix perturbations are assumed

known a-priori. The paper is organized as follows: Section 2
discusses the signal model and the approximate likelihood
model. The proposed SBL method is derived in Section 3.
Simulations using beamforming example are discussed in
Section 4 and conclusions are provided in Section 5.

2. SIGNAL MODEL

In this section we discuss the signal model used in SBL and
the assumptions made in this paper. Let y ∈ CN be the com-
plex signal which is expressed as

y = Ax + n, (1)

where noise n ∈ CN is zero mean circularly symmetric com-
plex Gaussian with covariance matrix σ2IN ; IN is an N ×N
identity matrix; A ∈ CN×M is the sensing matrix; x ∈ CM is
the weight vector. In sparse problem formulation, x is sparse
with at mostK non-zero entries whereK≪M . In most of the
literature it is assumed that the sensing matrix A is known and
has maximal column rank N . In this work we allow A to be
random with known statistics.

2.1. Prior

SBL models x as a zero mean circularly symmetric Gaussian
with prior density p(x) = CN (x;0,Γ), where the unknown
covariance matrix Γ is assumed to be diagonal Γ = diag(γγ)
where γγ = [γ1 . . . γM ]. We use 0 to denote a vector (or
matrix) of all zeroes with appropriate dimensions. Noise n
and weights x are assumed to be independent. The variance
γm is allowed to be zero and in fact at convergence many
γm → 0. The limiting Gaussian distribution (density does
not exist since the covariance Gamma is not invertible) thus
obtained is sparse. The notation CN (z;µ,Σ) denotes a cir-
cularly symmetric complex Gaussian density function with
mean µ and covariance Σ,

CN (z;µ,Σ) = 1

πk det(Σ) exp
( − (z −µ)HΣ−1(z −µ)),

where Σ is a Hermitian and non-negative definite matrix.

2.2. Likelihood

Very often the sensing matrix A is assumed deterministic, de-
note this by A = Ao. Since the noise is assumed Gaussian,
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given the weight vector x and the sensing matrix Ao, the like-
lihood function is written as

p(y∣x) = p(y∣x;Ao) = CN (y;Aox, σ2IN). (2)

Sensing matrix perturbation: The assumption A = Ao

does not always hold, especially when there is uncertainty in
the model or parameters used to construct the matrix A. For
example, in plane wave beamforming entries of the matrix A
depend on array positions and the sound speed. These param-
eters may not be accurately known or can change over time.
To account for perturbations we model the matrix A as a ran-
dom matrix. Express the matrix A as

A = Ao +Ae, (3)

where Ao is a known matrix and Ae is a random matrix which
accounts for the perturbation in A. The perturbation model
in (3) has been studied in [12, 14–16, 19]. In the context of
beamforming, sensing matrix perturbations have been studied
in [20, 21]. We now derive a likelihood function by approxi-
mately averaging out the perturbations in model (3).

Approximate likelihood: For computational tractability
we impose certain restrictions on Ae. Denote the mth col-
umn of matrix Ae by aem. We assume that the random vectors
aem have zero mean, zero relation matrix, and known covari-
ance matrix Σe

m with columns of Ae such that

E(aem) = 0 ; E(aemaeTn ) = 0 (4)

E(aemaeHn ) = δ(m − n)Σe
m (5)

where δ(m) is the Kronecker delta function. Since the per-
turbation Ae ∈ CN×M , full specification of its second order
moments requireO(NM ×NM) terms. The assumptions (4)
and (5) reduce the number of free parameters and keeps the
problem tractable. The perturbation Ae and the weights x are
assumed independent.

The signal model (1) when combined with the matrix per-
turbation model (3) can be written as

y = (Ao +Ae)x + n = Aox + ζ, (6)

where we have defined ζ = Aex+n. Here ζ can be considered
as the modified noise term (which also depends on the weights
x). To simplify the likelihood model, we compute the mean
and covariance of ζ:

E(ζ) = E(Aex + n) = 0 (7)

E(ζζH) = E(AexxHAeH) + E(nnH) (8)

= E( ∑
m,n

xmx
H
n aemaeHn ) + σ2IN (9)

= ∑
m,n

E(xmxHn )E(aemaeHn ) + σ2IN (10)

=∑
m

γmΣe
m + σ2IN = Σζ . (11)

In above simplification we have used independence of x and
Ae. The covariance matrix Σζ depends on 1) the variance of
the signal i.e. γm; 2) the covariance of the error in columns of
sensing matrix i.e. Σe

m; and 3) the covariance of the additive
white Gaussian noise i.e. σ2IN . For analytical simplification
we approximate the density of ζ to be Gaussian

p(ζ) ≈ CN (ζ;0,Σζ). (12)

To justify this we write ζ = ∑m xmaem + n. Now since x
is a high dimensional vector, ζ is a sum of large number of
random vectors. Hence applying the central limit theorem,
probability distribution of ζ converges to a Gaussian distri-
bution as M→∞. When x is K-sparse, the accuracy of the
approximation increases with K. The likelihood for the sig-
nal model (6) is now approximately expressed as

p(y∣x) ≈ CN (y;Aox,Σζ), (13)

Σζ = σ2IN +∑
m

γmΣe
m (14)

where ζ and x are assumed independent for analytical
tractability of the evidence term in Section 3.

Multiple snapshots: To increase the signal-to-noise ratio
(SNR) we usually process multiple observations (snapshots)
simultaneously. Let Y ∈ CN×L denote the collection of L
consecutive snapshots arranged column wise in a matrix. For
the multi snapshot case (1) becomes

Y = AX +N, (15)

where X = [x1 . . .xL] and N = [n1 . . .nL]. The weights
xl are assumed to be independent identically distributed with
Gaussian density. Similarly, noise is assumed to be indepen-
dent across snapshots. Thus

p(X) =
L

∏
l=1
p(xl) =

L

∏
l=1
CN (xl;0,Γ), (16)

p(Y∣X) =
L

∏
l=1
p(yl∣xl), (17)

where the single snapshot likelihood p(yl∣xl) is given by (13).

3. SPARSE BAYESIAN LEARNING

In the SBL framework [3,4], the prior parameter Γ is assumed
to be unknown and estimated using the observed signal Y. It
is estimated by maximizing the evidence (also called type-
II maximum likelihood). The evidence p(Y) is obtained by
averaging over all realizations of X

p(Y;γγ) = ∫ p(Y∣X)p(X)dX (18)

= ∫
L

∏
l=1
CN (yl;Aoxl,Σζ)CN (xl;0,Γ)dX (19)

=
L

∏
l=1
CN (yl;0,Σζ +AoΓAoH) =

L

∏
l=1
CN (yl;0,Σy),
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where we have defined Σy = Σζ+AoΓAoH for brevity. Note
that Σy contains both the parameters σ2 and Γ. Ignoring the
constant terms independent of σ2 and Γ, the logarithm of the
evidence can be expressed as

log p(Y;γγ) =
L

∑
l=1

− log ((π)N ∣Σy∣) −
L

∑
l=1

yHl Σ−1
y yl (20)

∝ −L log ∣Σy∣ − Tr(YHΣ−1
y Y), (21)

where Tr() denotes the trace of a matrix.

3.1. Fixed point update

The estimate Γ̂ is the argument which maximizes the evidence

Γ̂ = arg max
Γ

log p(Y;γγ) (22)

= arg min
Γ

⎧⎪⎪⎨⎪⎪⎩
L log ∣Σy∣ + Tr(YHΣ−1

y Y)
⎫⎪⎪⎬⎪⎪⎭
. (23)

One approach to solve this problem is using the EM algo-
rithm [22] but the resulting update equations have slow con-
vergence properties [3, 4]. We perform differentiation of the
objective function in (23) to obtain a local minima. We have
the following derivative relations for the matrix Σy

∂ log ∣Σy∣
∂γm

= Tr
⎛
⎝
Σ−1

y

∂Σy

∂γm

⎞
⎠
, (24)

∂Σ−1
y

∂γm
= −Σ−1

y

∂Σy

∂γm
Σ−1

y ,
∂Σy

∂γm
= Σe

m + aomaoHm . (25)

Differentiating (23) with respect to the mth diagonal element
γm of the matrix Γ we get

∂

∂γm

⎧⎪⎪⎨⎪⎪⎩
L log ∣Σy∣ + Tr(YHΣ−1

y Y)
⎫⎪⎪⎬⎪⎪⎭

= LTr(Σ−1
y [Σe

m + aomaoHm ])−

Tr(YHΣ−1
y [Σe

m + aomaoHm ]Σ−1
y Y). (26)

Equating the derivative of the objective function to zero

1 = 1

L

Tr(YHΣ−1
y [Σe

m + aomaoHm ]Σ−1
y Y)

Tr(Σ−1
y [Σe

m + aomaoHm ])
(27)

γm
γm

=
⎛
⎝
1

L

Tr(YHΣ−1
y [Σe

m + aomaoHm ]Σ−1
y Y)

Tr(Σ−1
y [Σe

m + aomaoHm ])
⎞
⎠

b

(28)

where we introduced γm terms to obtain an iterative update
equation. The update equation can then be formulated as

γnew
m ← γold

m

⎛
⎝

Tr(SyΣ−1
y [Σe

m + aomaoHm ]Σ−1
y )

Tr(Σ−1
y [Σe

m + aomaoHm ])
⎞
⎠

b

. (29)

where Sy is the sample covariance matrix Sy = 1
L

YYH . In
the above update equation, γold

m appears explicitly as well as
implicitly in the expression for Σy.

Remark: There are multiple ways to formulate a fixed
point update equation. Our formulation is inspired by some
of the equations used in the literature [3, 4, 8] and conver-
gence properties of the simulation results. It is not clear for
what values of b, if any, convergence of the update (29) can
be guaranteed. When we set Σe

m to zero, value of b = 1 gives
the update equation used in [3,4] and b = 0.5 gives the update
equation used in [8].

Posterior mean: Applying Bayes rule, the posterior dis-
tribution p(X∣Y) is Gaussian with mean given by [8]

Ep(X∣Y)(X) = ΓAoHΣ−1
y Y. (30)

Relation to other methods: In [12] the perturbation vec-
tors aem are assumed stochastic and an elastic net regression
problem is formulated by averaging out the perturbations.
Parametric modeling of the perturbations aem is considered
in [21] for plane wave beamforming. The parameters are
estimated within the iterative framework of SBL but only
specific perturbations are considered and cannot be general-
ized to include broader class of errors.

3.2. Noise estimate

Similar to the derivation of the update rule for γm, we can
develop an update equation for σ2 by computing derivative
of the evidence with respect to σ2. But the resulting update
equation is not very useful in practice [4, 7, 8] and this is pos-
sibly because of the identifiability issue [4]. Hence we use
traditional method to estimate σ2 in this paper. Let AM de-
note the matrix formed by K columns of A indexed byM,
where the setM indicates the location of non-zero entries of
x, ∣M∣ =K. We can estimateM using γγ. The noise variance
estimate is then given by

σ̂2 = 1

N −K Tr((IN −AMA+
M)Sy), (31)

where A+
M denotes the Moore-Penrose pseudo-inverse of the

matrix AM. This noise estimate has been used in [7, 8, 23].

4. SIMULATIONS

We use beamforming simulations to demonstrate the pro-
posed SBL method. In plane wave beamforming the observed
signal can be expressed as linear combination of plane waves
arriving from different angles. The arrival angles are in the
range [−90,90]○. Since the number of sources (arrival an-
gles) is usually small, finely dividing the angle space results
in a vector x of amplitudes which is sparse. SBL is used to
recover the angle of arrivals. We assume narrow band pro-
cessing and array sensor spacing is half the wavelength. The
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sensing matrix columns for beamforming are

aom = 1√
N

[1, e−jπsin(θm), . . . , e−j(N−1)πsin(θm)]T (32)

for m = 1 . . .M where θm is the mth discretized angle. The
angle space is discretized with 1○ separation giving M = 181.
We consider N = 20 sensors. In SBL implementation we set
b = 1. To simplify the simulations we make the assumption

Σe
m = φ IN , ∀m = 1,2, . . . ,M. (33)

The parameter φ is a tuning parameter of the algorithm. When
φ = 0 we get SBL in [4,8] which we refer to as SBL-Regular.
The proposed SBL (29) is referred to as SBL-Robust in this
section. For noise variance computation we estimate M by
picking K highest peaks from γγnew at each iteration. On con-
vergence, angle of arrivals are estimated corresponding to K
highest peaks of γγnew. Algorithm pseudo code can be found
in [8] with modified update using (29). A convergence error
threshold of 10−6 is used and we initialize γγ = 1.

4.1. Beamforming without perturbations

We consider three sources located at angles [−20,−15,75]○
with amplitudes [4,13,10] respectively. In this simulation
the sensing matrix columns used for generating signals are
given by (32) and there is no perturbation i.e. aem = 0. We
process L = 30 snapshots.

-5 -3 -1 1 3 5
SNR (dB)

0

2

4

6

8

10

12

14

M
ea

n 
R

M
S

E
 E

rr
or

SBL-Regular
SBL-Robust (? = 0.01)
SBL-Robust (? = 0.02)
SBL-Robust (? = 0.03)

-5 -3 -1 1 3 5
SNR (dB)

0

2

4

6

8

10

12

14

M
ea

n 
R

M
S

E
 E

rr
or

SBL-Regular
SBL-Robust (? = 0.03)
SBL-Robust (? = 0.04)
SBL-Robust (? = 0.05)

(a) Mean RMSE angle error vs. SNR

-45 -35 -25 -15 -5 5
angle (3)

0

2

4

6

8

10

12

14

av
er

ag
e 

po
st

er
io

r 
m

ea
n

SBL-Regular (? = 0)

(b) Posterior mean (φ = 0)

-45 -35 -25 -15 -5 5
angle (3)

0

2

4

6

8

10

12

14

av
er

ag
e 

po
st

er
io

r 
m

ea
n

SBL-Robust (? = 0.03)

(c) Posterior mean (φ = 0.03)

Fig. 1: Beamforming without perturbations: (a) Mean RMSE
angle error vs. SNR for different φ; Scatter plot of average
absolute posterior mean at (b) φ = 0 and (c) φ = 0.03.

We compute the angle RMSE at different SNR by varying

values of φ. The RMSE is
√

1
K ∑

K
k=1 (θ̂k − θok) where θok and

θ̂k are the true and estimated angles. The estimated angles
correspond to the first K peaks in γγ. The mean error over
500 random trials is shown in Figure 1a. SBL-Regular (blue)
is shown in both plots for comparison. For the proposed SBL
as φ is increased from 0 to 0.03 the mean RMSE error re-
duces (left) and on further increasing φ from 0.03 to 0.05 the
error starts increasing (right). The proposed SBL thus offers
advantage even when there is no sensing matrix perturbation.

Scatter plots of posterior mean at 0 dB SNR are shown in
Figures 1b and 1c. The plots show absolute posterior mean
computed using (30) and averaged across snapshots. From
Figure 1b, at low SNR, SBL-Regular often identifies spurious
peaks which compete with the weaker source peak located at
−20○. In Figure 1c, SBL-Robust (φ = 0.03) is able to sig-
nificantly suppress the amplitudes of the spurious peaks. The
proposed SBL improves support estimate as reflected by the
reduced average RMSE error in Figure 1a, though at the same
time the source amplitudes are slightly underestimated as seen
by comparing Figures 1b and 1c.

4.2. Beamforming with Gaussian perturbations

In this simulation we add zero mean complex Gaussian per-
turbations to sensing matrix. For generating signals, we
sample the perturbations aem from CN (aem;0, ψIN) inde-
pendently for each snapshot. Note that the parameter ψ is
different from φ that is used in the SBL implementation. We
set ψ = 0.02. The average RMSE error as a function of SNR
is shown in Figure 2. The error is higher in general because
of the perturbations and SBL-Robust reduces the error for
φ ∈ [0.01,0.04].
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Fig. 2: Beamforming with Gaussian perturbations: Mean
RMSE angle error vs. SNR for different values of φ.

5. CONCLUSIONS

We proposed a modified SBL to address the issue of perturba-
tions present in the sensing matrix. This is achieved by com-
puting approximate likelihood which integrates out the per-
turbations using the known statistics. This likelihood is used
to compute the approximate evidence which on maximization
gives an update rule for SBL. Simulations demonstrate that
the proposed method is able to improve support recovery.
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