
DISTANCE-PRESERVING PROPERTY OF RANDOM PROJECTION FOR SUBSPACES

Gen Li and Yuantao Gu

Tsinghua National Laboratory for Information Science and Technology
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

ABSTRACT

Dimension reduction plays an essential role when decreasing
the complexity of solving large-scale problems. The well-known
Johnson-Lindenstrauss (JL) Lemma and Restricted Isometry Prop-
erty (RIP) admit the use of random projection to reduce the dimen-
sion while keeping the Euclidean distance, which leads to the boom
of sparsity related signal processing. Recently, successful appli-
cations of sparse models in computer vision and machine learning
have increasingly hinted that the underlying structure of high di-
mensional data looks more like a union of subspaces (UoS). In
this paper, motivated by JL Lemma, we study for the first time the
distance-preserving property of Gaussian random projection matri-
ces for two subspaces based on knowledge of Grassmann manifold.
We theoretically prove that with high probability the affinity or the
distance between two compressed subspaces are concentrated on
their estimates. Numerical experiments verify the theoretical work.

Index Terms— Johnson-Lindenstrauss Lemma, Restricted
Isometry Property, Gaussian matrix, Union of Subspaces, affinity

1. INTRODUCTION

In a big data era, the dimensionality of problems increases rapidly.
Dimension reduction is important to reduce the complexity of solv-
ing methods. For example, Restricted Isometry Property (RIP) [1,
2, 3] admits the use of random projection to reduce the dimension
while keeping the Euclidean distance, which leads to the boom of
Compressed Sensing (CS) and sparsity related researches [4, 5, 6].
In CS, it has been shown that, with high probability, a random pro-
jection of a high-dimensional but sparse or compressible signal onto
a low-dimensional space can be recovered robustly due to the RIP of
some random projections. Typically the problem of CS is described
as

y = Φx,

where x ∈ R
N is a k-sparse signal vector, y ∈ R

n(n < N) is
the compressed vector, and Φ ∈ R

n×N is a random projection ma-
trix. To sufficiently ensure unique representation and robust recov-
ery to the original signal, the random projection matrix should ap-
proximately preserve the distance between any two k-sparse signals.
Specifically, the well-known Johnson-Lindenstrauss (JL) Lemma [7]
states that, with high probability, there exists a constant 0 < ε < 1,
such that

(1− ε)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + ε)‖x1 − x2‖22.
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Fig. 1. This paper studies the distance-preserving property of Gaus-
sian random projection matrices for two subspaces.

And RIP is a generalization of this lemma. In addition, there are
theoretical results showing some angle-preserving properties as well
[8, 9].

Furthermore, in [10, 11, 12], the signals of interest have been
extended from conventional sparse vectors to the vectors that belong
to a union of subspaces (UoS). Nowadays, UoS becomes an impor-
tant topic [12, 13, 14]. It has been proved in [15, 16] that, with high
probability the random projection matrix Φ can preserve the length
of a signal as well as the distance between two signals that lie in an
UoS. Recently, the stable embedding property has been extended to
signals modeled as low-dimensional Riemannian sub-manifolds in
Euclidean space [17, 18, 19].

Very recently, there have been many researches focusing on dif-
ferent aspects of Subspace Clustering (SC) [20, 21, 22]. A ready
approach to reduce the complexity of SC is to compress the original
samples into low dimensional vectors and then to cluster the sub-
spaces in the low dimensional space, which is called Compressed
Subspace Clustering [23, 24]. The affinity between two subspaces
determines their separability.

1.1. Main contribution

Although the UoS model is the most popular signal model and is
extensively used in various applications, few theoretical analysis
describes the embedding performance on these linear subspaces
via random measurement matrices. In this paper, motivated by JL
Lemma we study the distance-preserving property of Gaussian ran-
dom projection matrices for two subspaces based on knowledge of
Grassmann manifold. First, we use the fact that subspaces are points
on the Grassmann manifold to define a metric on the set. Then, we
prove the JL Lemma for two subspaces, that is, with high probability
there exists a constant 0 < ε < 1, such that

(1− ε)d2(X1,X2) ≤ d2(Y1,Y2) ≤ (1 + ε)d2(X1,X2),

where X1,X2 and Y1,Y2 are the original subspaces and compressed
subspaces, respectively. Finally, we find the relationship between
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the distance and affinity of two subspaces, and draw conclusion to
the affinity to provide a theoretical guarantee for CSC.

Although different metrics and distance measures have been
used to describe the topological structure of the Grassmann mani-
fold [25, 26, 27], as far as we know, there is no rigorous theoretical
analysis for the distance-preserving property of subspaces. This
paper theoretically studies this problem for the first time 1.

2. PROBLEM AND MOTIVATION

The space consisted of all subspaces of Rn is denoted by
⋃n

r=0 Gr(r, n),
where Gr(r, n) denotes a Grassmann manifold. Because each sub-
space corresponds to one and only one projection matrix, a distance
measure on the space is defined by

d(X1,X2) =
1√
2
‖PX1 −PX2‖F ,

where X1,X2 are two subspaces of Rn and PX1 ,PX2 are the cor-
responding projection matrices, respectively. One may readily find
that this definition meets all requirements in the definition of dis-
tance measure, thus the space becomes a metric space. In addition,
if we define the affinity between two subspaces as

aff(X1,X2) = ‖UT
1 U2‖F ,

where U1,U2 are, respectively, orthonormal matrices of X1,X2

with dimension d1 and d2, we will find that there is a close rela-
tionship between the distance and the affinity.

Lemma 1 The distance and affinity between two subspaces are re-
lated by

d2(X1,X2) =
d1 + d2

2
− aff2(X1,X2).

Suppose there are two subspaces X1,X2 ⊂ R
N with dimen-

sions, respectively, d1, d2 � N . The projection matrix Φ ∈ R
n×N ,

n < N , is composed of entries independently drawn from Gaussian
distribution N (0, 1/n). The dimension-reduced data that randomly
projected by Φ compose an n-dimension ambient space and the orig-
inal subspaces change to

Xk
Φ−→ Yk = {y|y = Φx, ∀x ∈ Xk}, k = 1, 2.

Assuming d1 ≤ d2 ≤ n, the dimension of subspaces remains un-
changed after random projection in statistical sense. When d1 = 1,
X1 reduces to a vector.

In this paper, we will study the separability of subspaces after
random projection. We use the affinity and the distance to measure
the separability between two subspaces before and after compres-
sion, respectively, by

affX = aff(X1,X2), dX = d(X1,X2),

and

affY = aff(Y1,Y2), dY = d(Y1,Y2).

According to its definition, we can also write

affX =

(
d1∑
i=1

λ2
i

) 1
2

,

1The full version of this work is available at [28], which includes the
detailed proofs and remarks.

where λi is the absolute singular values of UT
1 U2. Or we can define

λi equivalently as

λi = cos(θi) = max
x1∈X1

max
x2∈X2

xT
1 x2

‖x1‖22‖x2‖22
:=

xT
1ix2i

‖x1i‖22‖x2i‖22
with the orthogonality constraints xT

k xkj = 0, j = 1, ..., i− 1, k =
1, 2.

3. MAIN RESULTS

In this section, we present our results on the distance-preserving
property of subspaces after random projection. It begins with a sim-
ple case of estimating the compressed affinity of a vector and a sub-
space, and then extends the result to the case of two subspaces. Fi-
nally, the Restricted Affinity Property is stated.

Before introducing the main results, we would like to empha-
size that the notation of less than in this work holds in the sense of
equivalence. For example, if f(n) ≤ 1

n−2
, we may state that, with-

out confusion, f(n) ≤ 1
n

when n is large enough for simplicity,

considering that 1
n−2

∼ 1
n

.

3.1. Estimated affinity between compressed subspace and vec-
tor

We first study the separability of a vector and a subspace after ran-
dom compression.

Lemma 2 Suppose X1,X2 ⊂ R
N are a vector and a d-dimension

subspace, respectively. Let affX = λ denote the affinity between
them. If X1 and X2 are projected onto R

n by a random Gaussian
matrix Φ ∈ R

n×N , Xk
Φ−→ Yk, k = 1, 2, then the affinity after

projection, affY , can be estimated by

aff
2
= λ2 +

d

n

(
1− λ2) , (1)

where the estimation error is controlled by

P

(
|aff2

Y − aff
2| > λ2(1− λ2)ε

)
≤ 4

ε2n
, (2)

when n is large enough.

PROOF According to the assumption and the definition of affinity,
we can write the unit basis of X1 as u = λu1 +

√
1− λ2u0 where

u1 is some unit vector in the subspaceX2 and u0 is some unit vector
which is orthogonal toX2. Then we can choose U = (u1, ...,ud) as
an orthonormal matrix of X2. After the random projection, let V de-
note the orthonormal matrix of ΦU transformed by Gram-Schmidt
process and a = Φu = λa1 +

√
1− λ2a0. Since a1 has the same

direction with v1, we have

aff2
Y = 1− (1− λ2)

‖a0‖2
‖a‖2

(
1−

d∑
i=1

cos2 θi

)
,

where θi denote the angles between a0 and vi for i = 1, ..., d. Fi-
nally we can estimate ‖a0‖2/‖a‖2 and

∑d
i=1 cos

2 θi separately to
get the result. Please refer to [28] for details.

Using Lemma 1 and Lemma 2, we may readily reach the
distance-preserving property of a vector and a subspace. Let
dX =

√
(d+ 1)/2− λ2 denote the distance between vector X1

and d-dimension subspace X2, then the distance after projection,
dY , can be estimated by
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d
2
= d2X − d

n

(
d2X − d− 1

2

)
.

When n is large enough, the estimation error is controlled by

P

(
|d2Y − d

2| > λ2(1− λ2)ε
)
≤ 4

ε2n
. (3)

3.2. Estimated affinity between two compressed subspaces

We then study the separability of two subspaces after random com-
pression by similar mathematical tools as the ones used in Lemma
2.

Theorem 1 Suppose X1,X2 ⊂ R
N are two subspaces with di-

mension d1, d2, respectively. Let dm = min{d1, d2} and dM =
max{d1, d2}. Define

aff
2
= aff2

X +
dM
n

(dm − aff2
X ) (4)

to estimate the affinity between two subspaces after random projec-
tion, Xk

Φ−→ Yk, k = 1, 2. When n is large enough, the estimation
error is controlled by

P

(
|aff2

Y − aff
2| > aff2

X ε
)
≤ 4dm

ε2n
. (5)

PROOF Assume that d2 ≤ d1 and aff2
X =

∑d2
i=1 λ

2
i . We can choose

Uk = (uk,1, ...,uk,dk ) as the orthonormal matrix of Xk for k =
1, 2, respectively, such that

U2 = (u2,1, ...,u2,d2)

=

(
λ1u1,1+

√
1− λ2

1u1, ..., λd2u2,d2+
√

1− λ2
d2
ud2

)
, (6)

where u1,1, · · · ,u1,d2 and u1, · · · ,ud2 are orthogonal. Let
Vk = (vk,1, ...,vk,dk ) denote the orthonormal matrix of Ak =
ΦUk = (ak,1, ...,ak,dk ) for k = 1, 2. Let A = (a1, ...,ad2) =
(a2,1/‖a2,1‖, ...,a2,d2/‖a2,d2‖). The sketch of proof goes as fol-
lows. We first use ATV1 to estimate aff2

Y = VT
2 V1 [29]. Then,

with Lemma 2, we get the estimator aff
2
= aff2

X + d1
n
(d2 − aff2

X )

through estimating every row of ATV1, that is the affinity between
the row of A and V1. Finally, we simplify the result to achieve the
conclusion. Please refer to [28] for details.

One may easily check that Theorem 1 agrees with Lemma
2 when dm = 1. Using Lemma 1 and Theorem 1, we may
reach the distance-preserving property of two subspaces. Let

dX =
√

(d1 + d2)/2− aff2
X denote the distance between X1,X2,

then the distance after projection, dY , can be estimated by

d
2
= d2X − dM

n

(
d2X − dM − dm

2

)
.

When n is large enough, the estimation error is controlled by

P

(
|d2Y − d

2| > d2X ε
)
≤ 4dm

ε2n
. (7)

3.3. Distance-preserving property of random projection for
subspaces

Using triangle inequality in (7), we have

P

(
|d2Y − d2X | > dM

n

(
d2X +

dm − dM
2

)
+ d2X ε

)
≤ 4dm

ε2n
. (8)

By the fact that dM−dm
2

≤ d2X ≤ dM+dm
2

, if we consider the error,
dM
n

(
d2X + dm−dM

2

)
+d2X ε, in (8) as a whole, then we can conclude

the following theorem.
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Fig. 2. This figure demonstrates the experimental frequency (de-
noted by curves) and the theoretical estimate (denoted by bars) of
the compressed affinity, where (N,n) = (500, 200), (d1, d2) =
(5, 10), and the original affinities are fixed as 1, 2, 3, and 4. The
frequencies are calculated by 1E5 trials.

Theorem 2 Suppose X1,X2 ⊂ R
N are two subspaces with di-

mension d1, d2, respectively. Let dm = min{d1, d2} and dM =
max{d1, d2}. If X1 and X2 are projected into R

n by a random

Gaussian matrix Φ ∈ R
n×N , Xk

Φ−→ Yk, k = 1, 2, then we have

(1− ε)d2X ≤ d2Y ≤ (1 + ε)d2X , (9)

with probability at least 1− 4dm
(ε−dM/n)2n

, when n is large enough.

Theorem 2 shows that when n is sufficiently large, the distance
between two subspaces remains unchanged with probability 1 after
Gaussian random projection. When n is large enough, the change of
affinity after projection is controlled by

P(|aff2
Y − aff2

X | > ε) ≤ 4dmaff4
X

(ε− dMdm
n

)2n
. (10)

And the change of distance after projection is controlled by

P(|d2Y − d2X | > ε) ≤ 4dmd4X
(ε− dMdm

n
)2n

. (11)

Please notice that we will not draw a conclusion for affinity similar
to Theorem 2, because the affinity is not a distance.

4. NUMERICAL SIMULATION

In this section, the main result of Theorem 1 is evaluated by numer-
ical simulations. In order to save computation, we first randomly
generate a subspace and then generate a second subspace by giv-
ing affinity as (6), where the λs are randomly generated from the
uniform distribution in [0, 1] and then scaled to the affinity. By
this method, we can generate two subspaces with any given affin-
ity, which are ready for projection.

In the first experiment, the estimate of the compressed affin-
ity (4) is verified in the condition of (N,n) = (500, 200) and
(d1, d2) = (5, 10). The original affinity in the ambient space is
chosen as aff2

X = 1, 2, 3, 4, respectively. For each aff2
X , a random

Gaussian matrix is generated and used to project the two subspaces
into the compressed space, where the compressed affinity aff2

Y is
calculated. The frequencies of the compressed affinities obtained
from 1E5 trials as well as with their theoretical estimates are demon-
strated in Fig. 2. One may read that the proposed estimate is rather
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Fig. 3. This figure demonstrates the experimental compressed affin-
ity (which frequency is denoted by gray area) and the theoretical
estimate (denoted by blue line), where (N,n) = (500, 200) and
(d1, d2) are displayed on the title.

accurate and the compressed affinities concentrate on their theoreti-
cal estimates.

In the second experiment, the estimate of the compressed affin-
ity is further tested for all possible original affinities and by various
subspace dimension combinations, where the dimensions of the am-
bient space and compressed space are the same as that in the first
experiment. Here (d1, d2) is chosen from a candidate set and the
original affinity varies from 0 to its maximum, i.e., min(d1, d2). For
each case, two original subspaces and a random Gaussian matrix
are generated, then the compressed affinity is calculated after pro-
jection. After repeating 500 times, the frequencies at different com-
pressed affinities are computed and normalized by its maximum, i.e.,
the compressed affinity with the highest appearance is assigned 1 and
the others are smaller than 1. Then the normalized frequencies for all
cases are plotted in Fig. 3, where the blue line denotes the theoretical
estimate. This result further verifies that the compressed affinities of
various dimensions of subspaces display the concentration property,
as shows in Theorem 1.

The third experiment tests the effect of N and n in Theorem
1. By fixing (d1, d2) = (5, 10), the compressed affinity of two
subspaces being projected from an N -dimension space to an n-
dimension space, where (N,n) is chosen from a candidate set, is
shown. The result is plotted in Fig. 4 by using the same way as
that in the second experiment. One may readily find that by increas-
ing n, the compressed affinity demonstrates better concentration.
Whereas the dimension of the original space, N , has no effect on
the concentration behavior. The observation agrees with Theorem 1.

In the last experiment, the upper bound of the estimated com-
pressed affinity (5) in Theorem 1 is verified numerically. By fixing
(d1, d2) = (5, 10), aff2

X = 2 and choosing (N,n) from a candidate
set, the probability that the estimate error falls out of the bound is
plotted in Fig. 5, where the blue line denotes the theoretical result
of (5), and the red line denotes the experimental result of 1E3 trials.
One may read that as n increases the theoretical bound approaches
to the experiment result gradually. This verifies that Theorem 1 is
rigid.
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Fig. 4. This figure demonstrates the experimental compressed affin-
ity (which frequency is denoted by gray area) and the theoretical es-
timate (denoted by blue line), where (d1, d2) = (5, 10) and (N,n)
are displayed on the title.
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Fig. 5. This figure demonstrates the experimental error (denoted by
red curve) and its upper bound (denoted by blue curve) of the esti-
mated compressed affinity, where (d1, d2) = (5, 10), the original
affinities are fixed as 2, and (N,n) are displayed on the title.

5. CONCLUSION

In this paper, we formulated subspaces as points on Grassmann man-
ifold, defined a metric for UoS, and found the relation between the
definitions of distance and affinity, which is an important quantity for
SC. Then we generalized JL Lemma in the case of compressing two
subspaces and established the distance-preserving property. In ad-
dition, we provided numerical simulations for validation. However,
how to prove the RIP for random projection for the space consisting
of all low-dimensional subspaces is still an open problem.
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