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ABSTRACT

In this work, we extend the popular sparse iterative covariance-
based estimator (SPICE) by generalizing the formulation to
allow for different norm constraint on the signal and noise pa-
rameters in the covariance model. For any choice of norms,
the resulting generalized SPICE method enjoys the same
benefits as the regular SPICE method, including being hyper-
parameter free, although the choice of norm is shown to
govern the sparsity in the resulting solution. Furthermore,
we show that there is a connection between the generalized
SPICE and a penalized regression problem, both for the case
were one allows the noise parameters to differ for each sam-
ple, and when treating each noise parameter as being equal.
We examine the performance of the method for different
choices of norms, and compare the results to the original
SPICE method, showing the benefits of using the generalized
version. We also provide a way of solving the generalized
SPICE using a gridless method, which solves a semi-definite
programming problem.

Index Terms— Covariance fitting, sparse reconstruction,
convex optimization

1. INTRODUCTION

Many problems in signal processing may be well described
using a linear model, such that

y = Bx+ e (1)

where y ∈ CN is a vector of measurements, B a matrix of re-
gressors, x the parameter vector, and e denotes the complex-
valued noise term, typically assumed to have zero mean and
covariance matrix Σ. This model occurs in a wide range
of applications, such as in, e.g., audio and speech process-
ing [1, 2] and spectroscopy [3, 4].

Historically, there have been two main principles avail-
able for solving these kinds of problems: parametric and non-
parametric methods. The latter do not rely on any a pri-
ori information about the signal, including assumptions on
the model structure or order, and are therefore more robust
to uncertainties in such model assumptions that the former.
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However, this robustness comes with the downside that the
non-parametric methods have, in general, larger variance in
the estimates compared to the parametric approaches, which
typically in turn are less robust [5]. Recently, notable ef-
forts have been made to combine these two approaches, devel-
oping so-called semi-parametric approaches, which typically
make some model structure assumptions, although restrain
from making strong model order assumptions, other than as-
suming that the solution is sparse. This implies that although
the dictionary, B ∈ CN×M , is formed using M � N sig-
nal candidates, only a few of these candidates are assumed
present in the signal. The problem is thus transformed into
finding the subset of these M candidates best approximating
the measured signal, y. Many sparse methods do this by en-
forcing sparsity on the vector x, creating a trade-off between
the model fit and the level of sparsity. Recently, many other
sparse methods have been proposed (see, e.g., [6–11] and the
references therein). One potential drawback of these methods
is the selection of the user parameter, which is often a non-
trivial task. Sometimes there are physical aspects that may
aid in the choice of this parameter, whereas, in other, some
kind of rule of thumb on how to choose it may be found [12].
Other ideas include solving the problem for all different val-
ues of the parameter [11], or to use some iterative process
for aiding in the choice [6, 13]. Another common way is to
use cross-validation to find a suitable regularization parame-
ter (see, e.g., [11]). In [14], a novel approach to form a sparse
method was proposed based on a covariance fitting criteria,
and was shown to overcome the drawback of selecting the
user parameter (see also [15–19]). The minimization criteria
that was proposed was

minimize
p≥0

∣∣∣∣∣∣R1/2(p) (R(p)− yy∗)
∣∣∣∣∣∣2
F

(2)

where || · ||F denotes the Frobenius norm, (·)∗ the conjugate
transpose, and where

R(p) = APA∗ (3)

A =
[

B I
]

(4)

p̃ =
[
p1 . . . pM

]T
(5)

σ =
[
σ1 . . . σN

]T
(6)

p =
[

p̃T σT
]T

(7)
P = diag (p) (8)
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with I denoting theN×N identity matrix, (·)T the transpose,
σ2
k the noise variance for sample k, and diag(z) the diagonal

matrix with the vector z along its diagonal, and zeros else-
where. It was further shown that solving (2) is equivalent to
solving

minimize
p≥0

y∗R−1(p)y + ||W̃p||1 (9)

where || · ||p denotes the p-norm, and

W̃ = diag
([

w1 . . . wM+N

])
(10)

wk = ||ak||2 (11)

with ak denoting the kth column of A. It is clear from the for-
mulation in (9) that the problem promotes a sparse solution,
as a result of the `1 norm, which penalizes both the parame-
ters corresponding to B and the parameters corresponding to
the noise.

In this paper, we generalize the SPICE approach to allow
for different penalties for p̃ and σ given in (5) and (6), respec-
tively. For the case where all the σk are equal, we show that
the choice of the norm for the noise parameters corresponds
to the different choices of the regularizing parameter, µ, for a
penalized regression problem. In the case when all σk are al-
lowed to be different, the choice of norm is similarly shown to
also affect the sparsity level. This results in the fact that even
if the different SPICE formulations are hyper-parameter free,
one may interpret the choice of norm as a hyper-parameter for
the sparseness of the solution.

2. THE {R,Q}-SPICE FORMULATION

It is worth noting that the second term in (9) penalizes the
magnitude of each pj and σk, thus promoting a sparse so-
lution with only a few of the terms in p being non-zero.
However, since the penalty does not distinguish between set-
ting the different terms to zero, one may expect that some of
the σk may be forced to be zero as a part of the minimiza-
tion. If one is interested in finding a sparse solution from the
columns of the dictionary B, which would be the case for,
e.g., the LASSO, setting some of the noise parameters σk
to zero makes little sense. Another intuition is given if one
interprets (9) as an implicit restriction on R such that it must
be invertible. Thus the total number of σk and pj that can be
set to zero is restricted, and in fact, setting any σk to zero is
problematic as the resulting covariance matrix, R, loses rank,
unless some of the pj are non-zero. Similar conclusions were
stated in [20], where a gridless formulation of SPICE was
derived. It was shown that for the gridless version of SPICE,
R had full rank with probability one, which in turn made
the method overestimate the model order. Consequently, set-
ting many σk to zero, will force the resulting p̃ to be less
sparse, thus increasing the estimated model order. Thus,
in the SPICE formulation, σk and pj are competing for the

sparseness allowed in the solution of (9). This suggests that if
one could allow for other norms constraining the parameters
in (9), the result might be improved. In this work, we inves-
tigate such a generalization to the SPICE method, and show
how this affects the solution. One possible extension may be
formulated as, where R = R(p) for notational convenience

minimize
p≥0

y∗R−1y + ||Wp||r + ||Wσσ||q (12)

where q, r ≥ 1, such that

||Wσ||r =

[
M∑
k=1

wqkp
r
k

]1/r

(13)

||Wσσ||q =

[
N∑
k=1

wqM+kσ
q
k

]1/q

(14)

W = diag
([

w1 . . . wM
])

(15)

Wσ = diag
([

wM+1 . . . wM+N

])
(16)

Thus, setting q = 1 and r = 1 yields the original SPICE
formulation. Note that, more general regularization functions
could also be used, but in this paper, we confine our atten-
tion to the r- and q-norm cases, which we hereafter term the
{r, q}-SPICE formulation.

3. LINKING {R,Q}-SPICE TO THE LASSO

To demonstrate the effects of introducing the r- and q-norms
to SPICE, we follow the derivation in [17,18], and proceed to
examine the connection between {r, q}-SPICE and a penal-
ized regression problem. In order to do so, we distinguish be-
tween two cases, namely the case when each σk are allowed
to have distinct values, and the case when all σk are equal.
First, we recall a lemma that will be helpful for the following
derivation (see also [18]).

Lemma 1. Let

P̃ = diag
([

p1 . . . pM
])

(17)

and

Σ = diag
([

σ1 . . . σN
])

(18)

Then,

y∗R−1y = minimize
x

(y −Bx)∗Σ−1(y −Bx)

+

M∑
k=1

|xk|2/pk (19)

with the minimum occurring at

x̂ = ΣB∗R−1y (20)
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3.1. Varying noise variance

Using Lemma 1, one may rewrite (12) as

minimize
x,p,σ

N∑
k=1

|yk − b∗
kx|2/σk +

M∑
k=1

|xk|2/pk

+

(
M∑
k=1

wrkp
r
k

)1/r

+

(
N∑
k=1

wqM+kσ
q
k

)1/q

(21)

Differentiating (21) with respect to (w.r.t.) pj and setting it to
zero yields

pj = w
− r

r+1

k |xk|
2

r+1 ||W1/2x||
r−1
r+1
2r

r+1

(22)

Doing the same for σk yields

σk = w
− q

q+1

M+k |rk|
2

q+1

∣∣∣∣∣∣W1/2
σ r

∣∣∣∣∣∣ q−1
q+1

2q
q+1

(23)

Finally, inserting (22) and (23) into (21) yields

minimize
x

∣∣∣∣∣∣W1/2
σ (y −Bx)

∣∣∣∣∣∣
2q

q+1

+
∣∣∣∣∣∣W1/2x

∣∣∣∣∣∣
2r

r+1

(24)

From the resulting expression, it may be noted that by prop-
erly choosing the r- and q-norms, we may reach a large range
of penalized regression problems. This implies that if we
are able to solve the {r, q}-SPICE minimization problem, we
also solve the corresponding penalized regression problem. It
might thus be in many cases preferable to solve (12) rather
than trying to compute (24). The implications of this will be
discussed further below.

Clearly, regardless of the choice of r and q, the corre-
sponding problem in (12) will still be scale invariant. To see
this, we follow [18] and scale each pk and σk with a constant
c, doing the same for the cost function in (12), thus defining

g(p,σ) , cy∗ (AcPA∗)
−1

y

+ c

[
M∑
k=1

wqkc
rprk

]1/r

+ c

[
N+M∑
k=M+1

wqkc
qpqk

]1/q

= y∗ (APA∗)
−1

y + c2

[
M∑
k=1

wrkp
r
k

]1/r

+

c2

[
N+M∑
k=M+1

wqkp
q
k

]1/q

(25)

Defining the cost function in (12) as f(p,σ), we may use
Lemma 2 in [18] to conclude that if

{p̂, σ̂} = arg min
p,σ

g(p,σ) (26)

and

{ˆ̄p, ˆ̄σ} = arg min
p̄,σ̄

f(p̄, σ̄) (27)

then

ˆ̄p = cp̂ (28)

where c > 0, which is true in this case as well. Due to this
scale invariance, we conclude that the {r, q}-SPICE method
is also hyper-parameter free, in the same sense as SPICE. Fur-
thermore, it may be noted that when converting the pk to xk,
any scaling will disappear.

3.2. Uniform noise variance

If, similar to [17, 18], one instead assumes that all the noise
terms have equal variance, thus treating σk = σ, ∀k, one
arrives at an interesting conclusion: with this assumption, it
has been shown that the SPICE problem is connected to the
square-root LASSO problem [17, 18], i.e.,

minimize
x

||y −Bx||2 + µ||W1/2x||1 (29)

where µ = N−1/2 for SPICE. Following the derivation in
Section 3.1, together with the assumption that all the noise
terms have equal variance, yields µ = N−1/2q and

minimize
x

||y −Bx||2 + µ||W1/2x|| 2r
r+1

(30)

Thus, the choice of q corresponds to the weight that governs
the trade-off between the model fitting term and the regular-
ization of the parameters, and the choice of r decides which
norm will be used in the regularization of the parameters. For
instance, using r = 1 means that increasing q corresponds
to increasing the sparsity in the square-root LASSO. Again,
it might be preferable to solve (30) using the {r, q}-SPICE
formulation, rather than solving (30) directly.

4. OFF-GRID SOLUTION

Many forms of estimation problems are commonly solved by
evaluating over a grid of the parameters of interest. However,
such a solution may cause concerns when the sought solution
falls outside the grid or may be found in between grid points.
A common solution to this problem is to increase the grid size
to thereby minimize the distance from the closest grid point to
the true parameter value (see, e.g., [21,22]). However, such a
solution might cause the columns of the extended dictionary
to be highly correlated, thereby decreasing the performance
of the method. In [20] and [23], an off-grid solution to the
original SPICE version was presented. In this section, we
similarly provide one possible version of off-grid estimation
for the proposed {r, q}-SPICE method. In order to do so,
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Fig. 1. The RMSE of the frequency estimates, as defined in
(33), as a function of SNR for {r, q}-SPICE and SPICE.

it may initially be noted that one may separate R into two
different matrices

R = B∗diag (p̃) B + diag (σ) , T(u) + diag (σ) (31)

where T(u) is a Toeplitz matrix with u forming the first col-
umn of T(u). Thus, (12) may be expressed as

minimize
u,σ,x

||y||22x+ ||diag(T(u))||r + ||Wσσ||q

subject to
[
x y∗

y T(u) + diag (σ)

]
≥ 0

T(u) ≥ 0

T(u)−T(u)∗ = 0

σ ≥ 0 (32)

and under the additional constraint that T(u) is a Toeplitz
matrix. The optimization problem in (32) is convex, and may
be solved by using, e.g., a publicly available SDP (semidefi-
nite programming) solver, such as the one presented in [24].
The final off-grid estimates may then be found using the cele-
brated Vandermonde decomposition in combination with, for
instance, Prony’s method (see [5, 25] for further details on
such an approach)1.

5. NUMERICAL EXAMPLES

Arguably, the most interesting case for {r, q}-SPICE is when
we restrict q > 1, thus enforcing a sparse solution. We will
thus, in the numerical examples, focus on this situation, but
will include some examples showing the performance when
r > 1. We investigate two properties of the estimators,
namely the resulting root-mean-squared error (RMSE) of the

1An implementation of the algorithm will be provided online upon publi-
cation.
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Fig. 2. The probability of finding the correct model order of
the signal as a function of SNR for {r, q}-SPICE and SPICE.

frequency estimates, defined as

RMSE ,

√√√√ 1

P

P∑
k=1

|θ̂k − θk|2 (33)

where θk is the true frequency of the kth component, whereas
θ̂k is the formed estimate, and the ability to correctly estimate
the model order. The signal was N = 50 samples long and
contained 4 sinusoids with unit magnitude and random phase.
The simulation was done using 100 Monte-Carlo simulations
with circular white Gaussian noise, and where the noise terms
were allowed to differ. The solution was obtained by solving
(32) for all settings except for the original SPICE, where the
estimates were obtained from solving the problem formulated
in [23]. In Figure 1, the resulting RMSEs are shown for differ-
ent values of q and r, as a function of the signal-to-noise-ratio
(SNR). To make the figures readable, one respectively two
outliers were removed for SPICE and for the r = 3, q = 2
case for 5 dB SNR-level. Furthermore, to remove the noise
peaks that appear when using small values of q, all peaks
smaller than 20 % of the largest found peak was removed.
Note, however, that this is not necessary for the case where q
is larger. As is clear from the figure, the RMSE is decreased
as the sparsity level is increased, with the {r, q}-SPICE ver-
sions outperforming the original SPICE. This is also true for
the resulting model order estimation, which is shown in Fig-
ure 2. As may be expected, when increasing q the sparsity
is increased and the spurious peaks are removed, but as q is
further increased, the true peaks are starting to disappear. In
this setting, it seems to be beneficial to set the norms around
q = 1.5 and r = 1. From these results we conclude that the
generalized version of SPICE allows for better estimation of
parameter values, as well as model order.
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