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ABSTRACT

This paper presents a blind algorithm for the automatic detec-
tion of isolated astrophysical pulses. The detection algorithm
is applied to spectrograms (also known as “filter bank data”
or “the (t,f) plane”). The detection algorithm comprises a se-
quence of three steps: (1) a Radon transform is applied to
the spectrogram, (2) a Fourier transform is applied to each
projection parametrized by an angle, and the total power in
each projection is calculated, and (3) the total power of all
projections above 90◦is compared to the total power of all
projections below 90◦and a decision in favor of an astrophys-
ical pulse present or absent is made. Once a pulse is detected,
its Dispersion Measure (DM) is estimated by fitting an ana-
lytically developed expression for a transformed spectrogram
containing a pulse, with varying value of DM, to the actual
data. The performance of the proposed algorithm is numeri-
cally analyzed.

Index Terms— Fast Radio Bursts (FRB), astrophysical
pulse, blind detection, dispersion measure, estimation, filter
bank data, Radon transform.

1. INTRODUCTION

Fast Radio Bursts (FRB) are short-duration isolated radio
bursts of extragalactic nature [1, 2]. The origin of these mys-
terious sources is currently unclear. Some possible sources
that have so far been proposed to explain FRBs include col-
lapsing neutron stars [3], coalescing neutron-star binaries [4],
evaporating black holes [5], or cosmic strings [6]. Efficiently
finding more bursts will unlock their cause and may enable
the use of FRBs to probe the universe.

From a signal processing perspective, detecting single iso-
lated astronomical pulses is a challenging task. When a tele-
scope such as the Green Bank Telescope [7] is used to survey
the sky, gigabytes of radio astronomical data are streamed and
stored on disks in a matter of minutes. Therefore searching
for the astrophysical pulses in real time would save not only
the processing time but also the storage space.

Radio astronomical telescopes are designed to receive a
broad band signal, typically of order of hundreds of MHz.
The main distinctive feature of an astrophysical pulse is its

dispersed nature - the lower frequency components of the
pulse are delayed compared to higher frequency components.
The time delay is proportional to the density of free electrons
in the interstellar medium integrated over the distance that
the pulse travels. A well-established conventional approach
to the astrophysical pulse detection compensates for the de-
lay in low frequencies first and then integrates the signal
over the entire frequency range [8]. This process, known
as de-dispersion, boosts the SNR of the pulse signal. The
conventional de-dispersion followed by a matched filter de-
tection approach involves an exhaustive search for the correct
dispersion measure (DM) over a broad range of possible val-
ues. Nearly all FRBs discovered in the past were detected
using the conventional approach and its variants [9, 10] with
the exclusion of a few most recently discovered FRBs, where
new, fast detection algorithms based on transform methods
[11, 12, 13] have been involved.

This work is inspired by an approach described by We-
ber et al [14], which suggested the application of a two-
dimensional Fourier transform followed by a Hough trans-
form as a means of detecting giant pulses emitted by neutron
stars. We propose a new alternative blind approach for the
detection of isolated astrophysical pulses. The approach ex-
ploits the efficiency of two transform methods, the Radon
transform and the Fourier transform. A Radon transform
is applied to a broad band spectrogram – the astrophysical
signal stored as a two-dimensional function of time and fre-
quency (also known in radio astronomy as filter bank data).
The output of the Radon transform is presented as a set of
projections parametrized by an angle parameter. The Fourier
transform is applied to each projection, and the total power
in each projection is evaluated. The detection algorithm com-
pares the total power in all projections to the left and right of
90◦. Once an astrophysical pulse is detected, its DM value is
estimated by means of a least square approach involving an
analytical signature derived in this work. The performance
of the developed blind detection algorithm and the perfor-
mance of the DM estimation approach are demonstrated on
simulated data.

The remainder of the paper is organized as follows. Sec.
2 provides details of the proposed detection algorithm. Sec.
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3 describes a least square approach for estimation of the DM
value. Sec. 4 presents the results of a performance analysis.
A short summary is presented in Sec. 5.

2. DETECTION ALGORITHM

The detection algorithm comprises three main steps. A block-
diagram illustrating them is shown in Fig.1. A detailed de-

Fig. 1. A block diagram of the proposed detection approach.

scription of each block in the block-diagram is provided be-
low.

2.1. Radon transform

The first block in Fig.1 applies the Radon transform to filter
bank data. Denote by I(t, f) the filter bank data (treated here
as an image), then the Radon transform is mathematically de-
fined as [15]

Rθ(ρ) =

∫ tf

ti

∫ fh

fl

I(t, f)δ(ρ− t cos θ − f sin θ)dtdf, (1)

where θ is the angle of a projection, ρ is the offset of a pro-
jection line from the origin of the (t,f) plane, ti, tf , fl and fh
define four time-frequency boundary points of the (t,f) plane
and δ(·) is the Dirac delta function. Assuming that an astro-
physical pulse has a Gaussian profile, I(t, f) can be expressed
as

I(t, f) = h exp

(
− t2

2c2

)
δ(f)

∗ ∗δ
(
tref − t− 4.15× 103 × DM

(
f−2ref − f

−2
))

,

(2)

where h is the peak of the pulse profile in a frequency channel,
the parameter c is related to the full width at half maximum
(FWHM) according to FWHM = 2

√
2 ln 2c, tref is the refer-

ence time, f is the radio frequency of a channel, measured in
MHz, fref is a reference frequency in MHz (related to tref ),
DM stands for the dispersion measure in the units of pc/cm3,
and ∗∗ stands for a two-dimensional convolution.

Fig.2 provides an example of applying the Radon trans-
form to the “Lorimer burst” – the first FRB to be discovered
[1] – at a specific angle θ = 76◦. Fig.3(c) shows the Radon
transform of the Lorimer burst in panel (a). Fig.3(d) displays
the Radon transform of the filter bank data shown in panel (b),
which presents noise plus radio frequency interference (RFI)
– unwanted terrestrial signals – but no astrophysical pulse.

𝜃 

Fig. 2. The result of applying the Radon transform to the
Lorimer burst at the orientation θ = 76◦.

2.2. Fourier transform

As a second step, the algorithm applies the one dimensional
Fourier transform along the columns of Radon transformed
filter bank data. The Fourier transform for a projection of an
image at angle θ can be found as

rθ(u) =

∫ ∞
−∞

Rθ(ρ) exp (−j2πuρ) dρ, (3)

where u represents a frequency. Fig.2 shows an example of
projecting the Lorimer burst at an angle θ = 76 ◦, where Fig.4
shows the magnitude of the Fourier transform of the projec-
tion. Figs.3(e,f) show the magnitude of the Fourier transform
of Fig.3(c,d), respectively. The sum of magnitudes of the data
in panels (e) and (f) is shown in panels (g) and (h). The sum
is performed along the columns.

In Fig.3(g), the signature of the Lorimer burst appears as
a relatively strong and approximately Gaussian shaped pulse
in the range of projection angles θ ∈ [71◦, 79◦]. A large spike
at θ = 90 is due to the existence of RFI in the data. RFI is
characterized by a zero DM value and may be broadband at a
single time (bursty) or persistent at a single frequency. Such
interference shows up at θ = 0◦ and θ = 90◦ in the mag-
nitude of the Fourier transform. RFI has intentionally been
left in the figures presented here, to illustrate its effect. This
is normally removed by our algorithm by simply suppressing
the power in the projections around 0◦and 90◦. (The conven-
tional pulse detection approach also removes RFI prior to the
pulse detection process.)

2.3. Decision rule

The pulse can be detected by evaluating the overall power
in the projections. As observed from the panels (g) and (h)
in Fig. 3, the power distribution is nearly symmetric around
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(a) Lorimer burst
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(b) noise + RFI
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(c) Radon transform of (a)
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(d) Radon transform of (b)
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Fig. 3. Filter bank data in (a) and (b) and their stepwise trans-
formations.

90◦for the case when no pulse (noise only case) is present
in the data. As was noted earlier, for the case when the data
contain a pulse, the power distribution is skewed due to the
dispersion relationship in Eqn. 2.

Denote by rθ the cumulative power in the projection at an
angle θ. Then comparing the total power in the projections
below and above 90◦leads to the following intuitive decision
rule. Decide a pulse is present if

90◦−ε∑
θ=ε

|rθ|2 > γ

180◦−ε∑
θ=90◦+ε

|rθ|2, (4)
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Fig. 4. The magnitude of the Fourier transform of the projec-
tion of the Lorimer Burst at θ = 76◦.

where ε is a small number introduced to avoid inclusion of
RFI and γ is a decision threshold (γ > 1). The pulse is not
detected, otherwise.

3. ESTIMATION OF DM VALUE

Once the pulse is detected, we have enough information to
estimate its DM value. A basic approach to the estimation
problem is to establish upper and lower bounds on the DM
value via a linearization of the dispersion equation. This so-
lution is used as a baseline in performance evaluation.

Fitting an analytically derived signature of an astronomi-
cal pulse into the Fourier transform of projection lines is an
alternative least square solution to the same problem. We out-
line the second solution below.

After combining Eqns. 2 and 3 we obtain

rθ(u) =

∫ tf

ti

∫ fh

fl

I(t, f)

×
∫ ∞
−∞

δ(ρ− t cos θ − f sin θ)e−j2πρudρdtdf.
(5)

Integrating out ρ results in

rθ(u) =

∫ tf

ti

∫ fh

fl

I(t, f)e−j2π(t cos θ+f sin θ)udtdf, (6)

which is a two-dimensional Fourier transform with spatial fre-
quencies replaced by u cos θ and u sin θ. From Eqn. 2 and
the convolution property of the Fourier transform, Eqn. 6 be-
comes

rθ(u) =

∫ fh

fl

e
−j2π

(
u cos θ d

f2 +u sin θ
)
df

× e
−j2πu

(
tref− d

f2
ref

)
√
2πhe−

c2

2 (2π)2(u cos θ)2 .

(7)

Then the least square solution to the estimation problem is
given as

D̂M = arg min
DM∈[DMmin,DMmax]

||xθ(u)− rθ(u)||2, (8)
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where the distance is evaluated over all values θ and u such
that the estimated signal power in the data |xθ(u)|2 exceeds
the estimated noise variance σ2 in the data.

4. PERFORMANCE ANALYSIS

In this section the performance of the detection and DM es-
timation algorithms is evaluated. The performance of the de-
tection algorithm is demonstrated through Receiver Operat-
ing Characteristic (ROC) curves [16]. Due to a very limited
amount of practical data containing real FRB pulses (only 20
FRBs are known thus far), our numerical evaluation is based
on simulated data. The initial data are displayed in filter bank
format, where astrophysical pulses are dispersed according to
Eqn. 2. We assume that the pulse profile is Gaussian with the
FWHM set to 4.6 ms. The bandwidth of the simulated filter
bank data is set to 288 MHz, the center frequency fc is equal
to 1374 MHz. The bandwidth is partitioned into K = 96
discrete frequency channels, and the time resolution is set
to 0.25 ms. To add the noise to the simulated astrophysical
pulse, we apply the conventional definition of the signal-to-
noise ratio, where it is defined as a ratio of the peak value of a
de-dispersed and matched-filtered observed signal, to the root
mean square (RMS) of the simulated noise. For a fixed value
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Fig. 5. ROC curve (a) as a function of signal to noise ratio
(DM=375pc/cm3) (b) as a function of DM (SNR=10σ).

of DM we vary the value of SNR from 10σ down to 3σ,where
σ is the estimated RMS value of the noise in the de-dispersed
filter bank data. The results of the performance evaluation pa-
rameterized by the DM value 375pc/cm3 are displayed in Fig.
5(a). Each ROC curve shown in the figure is generated using
1000 Monte Carlo realizations of filter bank data including
noisy realizations of simulated astronomical pulses and also
noise only realizations. The results in Fig.5(a) indicate that at
SNR level 5σ and higher the probability of miss is very low
while the probability of detecting the true astrophysical pulses
is relatively high (for example, the detection rate is 0.95 at a
cost of false alarm rate equal to 0.05).

Fig. 5(b) demonstrates how the detection rate improves
with decreasing the value of DM. Note that in this case the
SNR value is set to 10σ.

The results of the analysis of the DM estimation problem
are presented in Fig. 6. We demonstrate the results of the
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Fig. 6. Interval estimate of DM (a) 100 realizations (SNR =
10σ) (b) estimation error rate as a function of SNR.

DM estimation due to the approach outlined by Eqn. 8. We
also plot the upper and lower bounds on the DM value of a
simulated astrophysical pulse. The results are displayed for
the case of the SNR value set to 10σ.

Fig. 6(a) demonstrates that the true value of DM is within
the interval between D̂Mlower and D̂Mupper. Due to the fact that
estimator function in Eqn. 8 is nonlinear function in θ, the
D̂Mupper values are more spread compared to D̂Mlower. Fig.
6(b) displays the probability of error as a function of SNR.
The probability of estimation error is referred to the percent-
age of times a true DM value is falling outside of the estimated
lower and upper bounds.

5. SUMMARY

This paper introduced a blind (fully automated) detection al-
gorithm for the detection of isolated astrophysical pulses. The
algorithm involves two transformations, the Radon transform
followed by the Fourier transform, and comprises three main
steps. Compared to the conventional detection algorithm used
in radio astronomy for the detection of isolated pulses, the
proposed detection algorithm does not require any searching
for the value of the unknown DM, which is computationally
expensive.

The performance of the detection algorithm is displayed
as a set of ROC curves. Two parameters are varied, the SNR
value and the DM value. The ROC curves show that a good
detection performance can be achieved at the SNR level 5σ
and above, which is a typical choice of the threshold for the
conventional detection algorithm.

Once an astrophysical pulse is detected, we apply a least
squares approach to estimate the DM value of the pulse. The
performance of the DM estimation algorithm is analyzed in
terms of the probability of estimation error. Through Monte
Carlo simulations we have demonstrated that the estimated
DM values are in the average 50pc/cm3 apart from the true
DM value (with 150pc/cm3 being the maximal deviation).
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