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ABSTRACT

This paper addresses the problem of detecting the presence

of a complex-valued, possibly improper, but unknown signal,

common among two or more sensors (channels) in the pres-

ence of spatially independent, unknown, possibly improper

and colored, noise. Past work on this problem is limited to

signals observed in proper noise. A source of improper noise

is IQ imbalance during down-conversion of bandpass noise to

baseband. A binary hypothesis testing approach is formulated

and a generalized likelihood ratio test (GLRT) is derived us-

ing the power spectral density estimator of an augmented se-

quence. An analytical solution for calculating the test thresh-

old is provided. The results are illustrated via simulations.

Index Terms— Multichannel signal detection; improper

signals; generalized likelihood ratio test (GLRT)

1. INTRODUCTION

We consider the problem of detecting the presence of a

complex-valued, possibly improper, but unknown signal,

common among two or more sensors. The unknown com-

mon signal is observed at multiple sensors in the presence

of unknown, possibly improper and colored, noise that is

independent across sensors.

A zero-mean complex-valued random sequence is called

proper if the cross-correlation function of the sequence with

its complex conjugate (called complementary correlation) is

vanishing [1]. Quite often, algorithms for complex signal

processing in communications and statistical signal process-

ing have been derived assuming that the complex signals

are proper [1, 2]. However, this assumption of propriety

is often not justified. For example, BPSK, offset QPSK,

GMSK and ASK modulation based signals are improper

[1]. Also, in-phase/quadrature-phase (IQ) imbalance during

down-conversion of bandpass signals to baseband can result

in impropriety in both signals and noise [3]. If the underlying

signals are improper, much can be gained in performance if

the information contained in the complementary correlation

is also exploited [1, 4, 5].

A potential application of this problem is in spectrum

sensing for cognitive radio (for other potential applications

see [6]) to decide if the received signal, in addition to noise,
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contains signals from a single or multiple primary users

(PUs). This is formulated as a binary hypothesis testing prob-

lem and is a well-investigated topic [7]. A wide variety of

approaches exist based on differing signal and noise models

[7]. A widely used model is that of temporally white but

spatially correlated proper complex Gaussian PU signal in

temporally and spatially uncorrelated proper complex Gaus-

sian noise [8]. Temporally colored, proper signals in spatially

uncorrelated but temporally correlated Gaussian noise have

been considered in [9] assuming multiple independent real-

izations (snapshots) and Gaussian PU signals, whereas only

one data realization is needed in [10]. [6] is an extension

of [9]. The model of [11] is limited to temporally white but

spatially correlated improper complex Gaussian PU signal in

temporally and spatially uncorrelated proper complex Gaus-

sian noise whereas [12] allows temporal correlation for both

improper signal and proper noise. Both show improved per-

formance compared to the case where improper signals are

treated as proper.

Relation to Prior Work: The model of [12] is limited to

improper signals in spatially independent proper noise. In this

paper we allow noise to be improper also.

Contributions: A binary hypothesis testing approach is

formulated and GLRT is derived using the power spectral den-

sity (PSD) estimator of an augmented sequence. An asymp-

totic analytical solution for calculating the test threshold is

provided. The results are illustrated via computer simulations.

Notation: We use S � 0 and S ≻ 0 to denote that

Hermitian S is positive semi-definite and positive definite, re-

spectively. For a square matrix A, |A| and etr(A) denote
the determinant and the exponential of the trace of A, re-

spectively, i.e., etr(A) = exp(tr(A)), Bk;i:l,j:m denotes the

submatrix of the matrix Bk comprising its rows i through l
and columns j through m, Bk;ij is its ijth element, and I is

the identity matrix. The superscripts ∗, T and H denote the

complex conjugate, transpose and the Hermitian (conjugate

transpose) operations, respectively.

2. SYSTEMMODEL

Let p× 1 n(t) denote a zero-mean spatially independent, sta-
tionary, possibly improper, random sequence (noise) and p×1
s(t) denote a zero-mean stationary, possibly improper random
sequence (signal) which is independent of {n(t)}. Both noise
and signal may be non-Gaussian. Let H0 denote the null hy-
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pothesis that the user is receiving just noise, and H1 is the

alternative that signal common to all sensors is also present.

We consider the following binary hypothesis testing problem

for the measurement sequence x(t):

H0 : x(t) = n(t), noise only

H1 : x(t) = s(t) + n(t), signal and noise.
(1)

We assume that noise is independent across sensors.

A stationary complex zero-mean process {x(t)} of di-

mension p is said to be proper [1] if its matrix complementary
correlation (covariance) function R̃xx(τ) vanishes, i.e.,

R̃xx(τ) = E{x(t+ τ)xT (t)} = 0, τ = 0,±1, · · · , (2)

where x(t) = xr(t) + jxi(t), with xr(t) and xi(t) denot-
ing its real and imaginary components, respectively. Define

Rxx(τ) = E{x(t + τ)xH(t)}, the conventional matrix cor-
relation function. The PSD Sx(f) of {x(t)} is the Fourier

transform of Rxx(τ), Sx(f) =
∑∞

τ=−∞
Rxx(τ)e

−j2πfτ ,

whereas the complementary PSD (C-PSD) S̃x(f) of {x(t)}
is S̃x(f) =

∑∞

τ=−∞
R̃xx(τ)e

−j2πfτ . Clearly, for a proper

process, the C-PSD vanishes.

We observe x(t) for t = 0, 1, · · · , N − 1 (N samples).

Since s(t) is assumed to be improper, we will exploit both

PSD and C-PSD. Define the augmented complex process

{y(t)} and the real-valued process {z(t)} as

y(t) =

[

x(t)
x∗(t)

]

, z(t) =

[

xr(t)
xi(t)

]

. (3)

We assume that {z(t)} satisfies Assumption 2.6.1 of [13] so
that some asymptotic results from [13] regarding PSD estima-

tors can be invoked; the time series need not be Gaussian but

its moments of all orders should be finite.

Consider the finite Fourier transform (FFT) dy(fn) of

y(t), t = 1, 2, · · · , N − 1, given by

dy(fn) :=

N−1
∑

t=0

y(t)e−j2πfnt (4)

where fn = n/N , n = 0, 1, · · · , N−1. Then the estimator of
the PSD of y(t) at frequency fn, based on the Daniell method,
is given by

Ŝy(fn) =
1

K

mt
∑

l=−mt

(

N−1dy(fn+l)d
H
y (fn+l)

)

(5)

whereK = 2mt+1 is the smoothing window size. Based on

[13, Theorem 7.3.3], it is shown in [12] that Ŝy(fn) is asymp-
totically (“large” N ) distributed asWC

(

2p,K,K−1Sy(fn)
)

(denoted as
a∼) where WC

(

2p,K,K−1Sy(fn)
)

denotes

the complex Wishart distribution of dimension 2p, degrees
of freedom K, and mean value Sy(fn), and we exclude

n = 0, N/2 on the right-side of (5). If a random matrixX ∼
WC (p,K,S(f)), then by [13, Sec. 4.2], E{X} = KS(f),

cov {Xjk,Xlm} = KSjl(f)S
∗
km(f), and for K ≥ p, the

probability density function (pdf) ofX is given by

fX(X) =
1

Γp(K)

1

|S(f)|K |X|K−p etr{−S−1(f)X} (6)

where the pdf (6) is defined for S(f) ≻ 0 and X � 0, and is
otherwise zero, and Γp(K) := πp(p−1)/2

∏p
j=1 Γ(K− j+1)

where Γ(n) denotes the (complete) Gamma function Γ(z) :=
∫∞

0
tz−1e−t dt.
We will confine our attention to the frequency points over

which the spectral estimators are approximately mutually in-

dependent, which for the Daniell method are given by

f̃k =
(k − 1)K +mt + 1

N
, 1 ≤ k ≤ M =

⌊ N
2 −mt − 1

K

⌋

.

(7)

LetM := {f̃k : 1 ≤ k ≤ M} denote the set ofM frequency

bins as in (7) of interest.

UnderH0, the ℓth component xℓ(t) of x(t) is independent
of xm(t) for ℓ 6= m. Let (ℓ = 1, 2, · · · , p)

S(ℓ)
y (f) :=

[

Sy;ℓℓ(f) Sy;ℓ(ℓ+p)(f)
Sy;(ℓ+p)ℓ(f) Sy;(ℓ+p)(ℓ+p)(f)

]

. (8)

Then in terms of Sx and S̃x,

S(ℓ)
y (f) =

[

S̃x;ℓℓ(f) S̃x;ℓℓ(f)

S̃∗
x;ℓℓ(−f) S∗

x;ℓℓ(−f)

]

. (9)

Under H0, all entries in Sy(f) are zeros except for those in

S
(ℓ)
y (f), ℓ = 1, 2, · · · , p. Under H1, x(t) is improper with

Sy(f) � 0 with no specific structure. Testing for the pres-

ence of an improper common signal in spatially independent

improper noise is then reformulated as the problem:

H0 : Sy;ℓm(f̃k) = 0 except for S
(ℓ)
y (f̃k)

ℓ = 1, 2, · · · , p ∀f̃k ∈ M
H1 : Sy(f̃k) ≻ 0 with no specific structure ∀f̃k ∈ M.

(10)

We assume that Sy(f) ≻ 0 for any f . Otherwise, one can
add artificial proper white Gaussian noise to x(t) to achieve
Sy(f) ≻ 0.

3. PSD-BASED GLRT

In this section we derive the GLRT. We will denote the spec-

tral estimator at the k-th frequency bin f̃k (see (7)), acquired
from {y(t)}N−1

t=0 , via (5), asYk. We have

Yk
a∼ WC

(

2p,K,K−1Sy(f̃k)
)

(11)

and Yks are mutually independent for k ∈ [1,M ]. The joint

pdf ofYk for f̃k ∈ M underH0 is maximized w.r.t. S
(ℓ)
y (f̃k)

for Ŝ
(ℓ)
y (f̃k) = Y

(ℓ)
k where

Y
(ℓ)
k :=

[

Yk;ℓℓ Yk;ℓ(ℓ+p)

Yk;(ℓ+p)ℓ Yk;(ℓ+p)(ℓ+p)

]

∈ C
2×2. (12)
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Under H1, the joint pdf of Yk for k ∈ [1,M ] is maximized

w.r.t. the Hermitian matrix Sy(f̃k) for Ŝy(f̃k) = Yk. Define

Y = {Yk, k ∈ M}. Then one gets the GLRT

L :=
fY(Yk, k ∈ M|H1, Ŝy(f̃k))

fY(Yk, k ∈ M|H0, Ŝ
(ℓ)
y (f̃k), ℓ ∈ [1, p])

H1

R
H0

τ1 (13)

where the threshold τ1 is picked to achieve a pre-specified

probability of false alarm Pfa = P{L ≥ τ1 |H0}. This re-
quires pdf of L under H0 which is discussed in Sec. 4. Sim-

plifying, one obtains

L =

M
∏

k=1

Lk, Lk :=

∏p
ℓ=1 |Y

(ℓ)
k |K

|Yk|K
(14)

Invariance of GLRT: Note that Lk is invariant to trans-

formation Y
(ℓ)
k → A

(ℓ)
k Y

(ℓ)
k A

(ℓ)H
k for any non-singular

Hermitian A
(ℓ)
k ∈ C

2×2, leaving the other entries of Yk un-

changed. In particular, by choosingA
(ℓ)
k =

√
K(S

(ℓ)
y (f̃k))

−1/2

for ℓ ∈ [1, p] we can transform any Yk to Ỹk such that

Ỹ
(ℓ)
k ∼ WC (2,K, I) and Ỹk ∼ WC (2p,K, I) under H0.

Then L is invariant.

4. THRESHOLD SELECTION

We now turn to determination of an asymptotic expansion of

the distribution of L under H0 following [14, 15, 16]. First

we need the following result:

Lemma 1 : UnderH0, for any h = 0, 1, 2, · · · , E{ 1
Lh |H0}

=

∏2
k=1 Γ

Mp(K − k + 1)
∏2p

j=1 Γ
M (K − j + 1)

∏2p
k=1 Γ

M (K(1 + h)− k + 1)
∏2

j=1 Γ
Mp(K(1 + h)− j + 1)

(15)

Proof : Using the transformation specified in Sec. 3 to obtain

Ỹk ∼ WC (2p,K, I) underH0, we have

E{1/Lh
k |H0} =

∫ |Ỹk|Kh+K−2p

∏p
ℓ=1 |Ỹ

(ℓ)
k |Kh

etr{−Ỹk}
Γ2p(K)

dỸk

=
Γ2p(K +Kh)

Γ2p(K)
E

{

|Ỹ′(ℓ)
k |−Kh

}

, (16)

where Ỹ′
k ∼ WC (2p,K(1 + h), I). Hence Ỹ

′(ℓ)
k s (defined

similar to (12)) are independent for ℓ ∈ [1, p] and Ỹ
′(ℓ)
k ∼

WC (2,K(1 + h), I) . Since (see [18, Theorem 3.8, p. 51])

E{|Ỹ′(ℓ)
k |−Kh} = E{(

2
∏

m=1

(1/2)Vm)−Kh}, (17)

Vm ∼ χ2
2(K(1+h)−m+1) and are independent, and (see [14, p.

101])

E{W r} =
2rΓ((n/2) + r)

Γ((n/2))
for W ∼ χ2

n, (18)

we obtain ∀ℓ ∈ [1, p]

E
{

|Ỹ′(ℓ)
k |−Kh

}

=

∏2
m=1 Γ(K + 1−m)

∏2
m=1 Γ(K(1 + h) + 1−m)

. (19)

Now using Γp(K) := πp(p−1)/2
∏p

j=1 Γ(K − j + 1), (14),
(16) and (19), we get the desired result. �

In order to exploit Lemma 2 (stated next), we need to es-

tablish that 0 ≤ L−1 ≤ 1. Since Yk ≻ 0 (hence Y
(ℓ)
k ≻ 0

∀ℓ), L−1 ≥ 0 follows immediately. By Fischer’s inequal-

ity [17, p. 477], we have |Yk| ≤
∏p

ℓ=1 |Y
(ℓ)
k | which implies

L−1 ≤ 1. The following result follows from [14, Sec. 8.2.4],

[15, Sec. 8.5.1]:

Lemma 2 : Consider a random variable W (0 ≤ W ≤ 1)
with the hth moment (h = 0, 1, 2, · · · )

E{Wh} = C

(

∏b
j=1 y

yj

j
∏a

k=1 x
xk

k

)h
∏a

k=1 Γ(xk(1 + h) + ξk)
∏b

j=1 Γ(yj(1 + h) + ηj)
,

(20)

where a and b are integers,C is a constant such thatE{W 0} =

1 and
∑a

k=1 xk =
∑b

j=1 yj . Let Br(h) denote the Bernoulli
polynomial of degree r and order unity. Define

ν = −2
[
∑a

k=1 ξk − ∑b
j=1 ηj − 1

2 (a − b)
]

, ρ = 1 −
1
ν

[
∑a

k=1 x
−1
k

(

ξ2k − ξk + 1
6

)

−∑b
j=1 y

−1
j

(

η2j − ηj +
1
6

)]

,

βk = (1− ρ)xk, ǫj = (1− ρ)yj and

ωr = (−1)r+1

r(r+1)

{
∑a

k=1
Br+1(βk+ξk)

(ρxk)r
− ∑b

j=1
Br+1(ǫj+ηj)

(ρyj)r

}

.

Then with χ2
n denoting a random variable with central chi-

square distribution with n degrees of freedom (as well as the

distribution itself),

P{−2ρ ln(W ) ≤ z} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+

1

2
ω2
2

[

P{χ2
ν+8 ≤ z} − 2P{χ2

ν+4 ≤ z}+ P{χ2
ν ≤ z}

]

}

+

a
∑

k=1

O(x−5
k ) +

b
∑

j=1

O(y−5
j ) • (21)

Comparing (20) with (15), we find the correspondence

a = 2Mp, b = 2Mp, xk = K,

ξk = −[(k − 1)mod(2p)] for k = 1, 2, · · · , a,
yj = K, ηj = −[(j − 1)mod(2)] for j = 1, 2, · · · , b. (22)

Comparing Lemmas 1 and 2, we further have

βk = (1− ρ)K ∀k, ǫj = (1− ρ)K ∀j. (23)

Furthermore, one has E{1/L0 |H0} = 1. Thus, Lemma 2 is
applicable with W = 1/L and parameters specified in (22).

Using these values in Lemma 2 and simplifying, one gets

ν = 4Mp(2p− 1), ρ = 1− 2(p+ 1)

3K
, (24)
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a
∑

k=1

Br+1(βk + ξk)

(ρxk)r
= M

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

(ρK)r
,

(25)
b

∑

j=1

Br+1(ǫj + ηj)

(ρyj)r
= Mp

2
∑

l=1

Br+1((1− ρ)K + 1− l)

(ρK)r
.

(26)

Therefore, we have

ωr =
(−1)r+1M

r(r + 1)(ρK)r

{

(

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

)

− p

(

2
∑

l=1

Br+1((1− ρ)K + 1− l)

)

}

. (27)

It then follows from Lemma 2 that

P{2ρ ln(L) ≤ z |H0} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+
1

2
ω2
2

[

P{χ2
ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+O(K−5) (28)

where ωr’s are given by (25)-(27), and

ln(L) = K
M
∑

k=1

(

[

p
∑

ℓ=1

ln |Y(ℓ)
k |

]

− ln(|Yk|)
)

. (29)

Theorem 1 allows us to calculate the test threshold analyti-

cally.

Theorem 1. The GLRT for (10) is given by 2ρ ln(L)
H1

R
H0

τ

where ρ and ln(L) are given by (24) and (29), respectively.

The threshold τ is picked to achieve a pre-specified Pfa =
1 − P{2ρ ln(L) ≤ τ |H0} where P{2ρ ln(L) ≤ τ |H0} is
given by (28) and the various needed parameters are specified

in (24)-(27) •

5. SIMULATION EXAMPLES

First we investigate the efficacy of Theorem 1 in computing

the GLRT threshold for a given Pfa. We consider p anten-

nas (p=2,3 or 4). Let ñi(t), i ∈ [1, p], denote p independent
zero-mean white proper Gaussian sequences. We generate

ni(t) = aIhI(t)⊛ñi(t)+aQhQ(t)⊛ñ∗
i (t)where aI = a∗Q =

(1 + j1)/
√
2, ⊛ denotes convolution, hI(t) = [0.3 1 0.3],

hQ(t) = [0.4 1 0.5]. Thus noise n(t) is spatially indepen-

dent, improper Gaussian. To estimate the PSD of augmented

y(t) forN = 256, we choosemt = 7 leading toK = 15 and
M = 8. In Fig. 1 we compare the actual Pfa and design Pfa

based on 10,000 runs. It is seen that Theorem 1 is effective in

accurately calculating the threshold value.

Next we show the receiver operating characteristic (ROC)

curves. The noise n(t) is as in the previous example and the

PU signal is given by s(t) =
∑4

l=0 h(l)I(t− l) where I(t) is
a scalar BPSK sequence and vector channel h(l) is Rayleigh
fading with 5 taps, equal power delay profile, mutually in-

dependent components. Thus both signal and noise are im-

proper. The probability of detection Pd versus false-alarm

rate Pfa results for three different SNR values and p = 3,
based on 10,000 runs, is shown in Fig. 2; SNR is defined as

ratio of the sum of signal powers at the p antennas to the sum
of noise powers. In all cases we have N=256, K=15 and

M=8. It is seen that performance improves with increasing

SNR. The approach of [12] applied to this problem treats im-

proper noise as signal, e.g., when designed with Pfa = 0.005,
it detects the improper noise of Fig. 1 (p = 2) with probabil-
ity 0.015; underH0 the test statistic of [12] is not invariant to

changes in impropriety of noise.

 design P
fa

10
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10
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10
-1

10
0

 a
c
tu

a
l 
P

fa

10
-4

10
-3

10
-2

10
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0

 256 samples; 10000 runs; K=15; M=8

p=2

p=3

p=4

Fig. 1: Actual Pfa vs. design Pfa, N = 256,K = 15,M = 8
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 P
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1
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snr=-10dB, p=3

snr=-7.5dB, p=3
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Fig. 2: ROC curve, N = 256,K = 15,M = 8

6. CONCLUSIONS

We investigated a PSD-based method for detection of com-

mon improper signal in improper noise. Our proposed ap-

proach is based on GLRT and it extends the approach of [12]

to improper noise. A source of improper noise/signal is IQ

imbalance during down-conversion of bandpass noise/signal

to baseband [3]. An analytical method for calculation of the

test threshold was provided and illustrated via simulations.
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