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ABSTRACT

Present day distributed inference systems consist of sensors
with different modalities working as a system to perform spe-
cific tasks. With multiple sensors sensing heterogeneous data
over multiple time instants, diversity is an inherent aspect of
such systems. In this work, we take the first step to characterize
the diversity of a general heterogeneous sensing system per-
forming inference tasks. We provide a unified definition for di-
versity which can be customized for the system in use. The use
of the definition is illustrated by applying it to a specific detec-
tion system where the sensors collect data over heterogeneous
sensing channels. We assume the data to be both temporally
and spatially correlated and analyze the effect of dependence
on the diversity of the detection system.

Index Terms— diversity, heterogeneous sensing, spatio-
temporal data, internet of things, distributed inference

1. INTRODUCTION

In typical multi-sensor inference systems, nodes often observe
different instantiations of the same process before forwarding
either quantized or unquantized data to a fusion center (FC)
[1–4]. The FC then processes this data to perform the inference
task. With the evolution of novel sensing technologies, often
sensors of different modalities collaborate to make a combined
decision. Such systems often deal with heterogeneity in data
and sensors, e.g., Internet of Things (IoT) [5–8]. Analysis of
such distributed inference systems is difficult because compu-
tation of their corresponding performance measures is often in-
tractable. This has motivated the researchers to perform analy-
sis under certain simplifying assumptions including asymptotic
analyses. While performing such analyses, diversity arises as
a natural surrogate to system performance [9–13]. Many re-
searchers have defined diversity measures in the context of spe-
cific problems [9–17]. We aim to bring all these definitions to-
gether into a single definition. Our major contributions in this
work are summarized as follows.

We present a unified definition of diversity for a general in-
ference system. We show that our definition is fairly general
and is applicable to many systems performing inference and
communication tasks [9–17]. We make use of our definition to
derive the diversity of a heterogeneous system performing a de-
tection task. We present a simple model which captures spatial
and temporal dependence among sensors and data respectively.
We also study the effect of dependence on the diversity of the
system.

This work was supported by ARO grant W911NF1410339.

2. DIVERSITY OF INFERENCE SYSTEMS

Consider an inference system performing a task T , where the
performance metric is utility U and the signal quality isQ. The
goal of any inference system is to perform T as efficiently as
possible, i.e, optimize U which in effect depends on Q. A sim-
ple example of T is a binary hypothesis test, U in this case can
be the error probability whereas Q can be the signal to noise
ratio (SNR). Next, we give a unified definition of diversity us-
ing the above metrics which can be used for several tasks in
inference networks.
Definition 1. We define the diversity of an inference network
performing an inference task T with utilityU and signal quality
Q at a specific point of target utility Uo as,

D =
∂F (U)

∂G(Q)

∣∣∣∣
U=U0

(1)

where, F : R→ R and G : R→ R are monotonic functions of
task utility U and signal quality Q, respectively.

Hence, diversity measures how U (function F ) varies at
the point of interest with Q (function G). In particular, high
diversity implies that we can get higher returns in performance
gain with only a little improvement in signal quality. In most
applications of interest, U and Q have a one-to-one mapping.
Therefore, one can use U = U0 or Q = Q0 in Definition 1
based on the context. Unless some simplifying assumptions are
made, the performance analysis of many systems is intractable,
i.e., U cannot be computed in closed form. Moreover, in many
cases, numerical evaluation of performance does not offer in-
sights into the system behavior. Sometimes, even in the cases
when U can be evaluated analytically, the expressions might be
too cumbersome to be used as a design criterion [17]. In such
systems, diversity can be used as a surrogate to the system util-
ity as a measure of performance. In the following, we show
how Definition 1 can be used to represent diversity presented in
the literature for various tasks by an appropriate choice of U ,
Q, F and G. 1

Table 1 details how different definitions of diversity used in
the literature are encompassed by our unified definition in Defi-
nition 1. MIMO based communication systems [9,18,19], have
defined diversity by using the error probability as the utility for
a fast-fading system and outage probability for slow-fading sys-
tems. For distributed estimation systems in [10], utility PD0 is
the probability that the mean square error (MSE) variance is
above some threshold. Similarly for distributed detection sys-
tems, utility is pJ0 which is the probability of J-divergence be-
ing less than some threshold. Most of these works, because
of the intractability of the corresponding utilities, perform an

1Notations from corresponding works are adopted for consistency.
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Table 1. Different definitions of diversity in inference tasks.
Task (T ) Diversity (D) Utility (U ) Quality (Q) Q0 or U0

MIMO communication [9] − lim
SNR→∞

log pe
log SNR Error probability SNR SNR→∞

Distributed estimation [10] − lim
Ptot→∞

logPD0
logPtot

Outage probability Total transmit power Ptot →∞

Distributed detection [11] − lim
Ptot→∞

log pJ0
logPtot

Outage probability Total transmit power Ptot →∞

Radar network [12] ∂PD
∂SNR

∣∣∣∣
PD=0.5

Detection probability SNR PD = 0.5

Spectrum sensing [13] − lim
SNR→∞

logP∗
log SNR Type-I, II, avg. error probability SNR SNR→∞

Spectrum sensing [14] max ∂PD
∂SNRdB

Detection probability SNRdB (in dB) argmax
PD,SNRdB

∂PD
∂SNRdB

asymptotic error exponent analysis, which yields a linear rela-
tionship between utility and signal quality in log-log domain.
This eliminates the need to use partial derivative in Definition
1.

While most definitions consider asymptotically high SNRs
or high signal quality Q, it is often desirable for the inference
systems to perform satisfactorily under severe network and re-
source constraints. Daher and Adve in [12] provide a definition
of diversity under these conditions (Table 1). Notice that this
definition has the slope in the linear scale as opposed to other
definitions. Also slope is evaluated at PD = 0.5 which is the
rising part of the PD vs SNR curve, where SNRs are typically
low.

Having shown the universal applicability of the generalized
definition of diversity, in the following, we consider a specific
inference system and derive the diversity for this system. We
also describe the benefits associated with the notion of diversity
in the design and analysis of inference systems.

3. DETECTION USING HETEROGENEOUS SENSORS
WITH SPATIO-TEMPORALLY DEPENDENT DATA

Consider an inference system performing a binary hypothesis
test, where multiple heterogeneous sensors collect multiple ob-
servations [1,2]. We model heterogeneity using a simple model
where the conditional probability density function correspond-
ing to each sensor is different. Specifically, we consider all the
sensors to be observing the phenomenon over a Gaussian chan-
nel but with different channel variances. We derive the diversity
for this system based on Definition 1 that captures the effect of
heterogeneity. Moreover, dependence across space and time
dimensions can have a major impact on the diversity of an in-
ference system. Most of the previous works ignore this depen-
dence for the sake of mathematical tractability. However, we
investigate the effect of this dependence on the diversity of an
inference system by presenting a relatively simple model with
only a few parameters that models spatio-temporal dependence.

3.1. System model
Consider a sensor network with K spatially distributed sensors
collecting N observations. The observation at the kth sensor at
the nth time instant is xk[n] for k ∈ {1, 2, . . . ,K} and n ∈
{1, 2, . . . , N}. The binary hypothesis test is:

H0 : xk[n] = wk[n],

H1 : xk[n] = A+ wk[n], (2)

where, A is a deterministic known signal and wk[n] is the ad-
ditive Gaussian noise. Dependence of xk[n] across space and

time is due to the dependence structure of noise described be-
low.

3.1.1. Time Dependence
Across time, we assume the noise to follow an autoregressive
model of order 1 (AR(1)) [18]. For the kth sensor, noise evolves
as

wk[n] = ρtwk[n− 1] + εk[n], for n = 1, 2, . . . , N, (3)

where, wk[0] = 0, |ρt| < 1 is the AR correlation parame-
ter, and εk[n] ∼ N (0, σ2

k) is independent (across n) Gaus-
sian white noise. Note that although the noise follows the same
AR(1) model across K sensors, the heterogeneity of the sens-
ing model is captured by different noise variances σ2

k.

3.1.2. Spatial Dependence
For spatial dependence, we assume that the component εk[n],
for any two given sensors k and k′ at any fixed time instant n,
is bivariate Gaussian with correlation parameter ρs. Therefore,
at the nth time instant, the noise correlation across space is

(εk[n], εk′ [n]) ∼ N (0, 0, σ2
k, σ

2
k′ , ρs) for k 6= k′. (4)

Therefore, the correlation between εk[n] and εk′ [n] is

ΣK(k, k′) =

{
σkσk′ρs, if k 6= k′

σ2
k, else

(5)

where, ΣK(k, k′) represents the element corresponding to kth
row and k′th column of the matrix ΣK . The correlation be-
tween kth and k′th sensor data at lth and mth time instants for
k, k′ ∈ {1, 2, · · · ,K} and l,m ∈ {1, 2, · · · , N} is

ΣNK(kl, k′m)

=

σkσk′ρs
ρ
l+m−2min{l,m}
t (1−ρ2min{l,m}

t )

1−ρ2t
, if k 6= k′

σ2
k
ρ
l+m−2min{l,m}
t (1−ρ2min{l,m}

t )

1−ρ2t
, if k = k′.

(6)

Here ΣNK is an NK × NK matrix whose klth and k′mth
element is the correlation between the lth observation of the kth
sensor and the mth observation of the k′th sensor. We define a
matrix ΣN ∈ RN×N with lth and mth element as

ΣN (l,m) =
ρ
l+m−2min{l,m}
t (1− ρ2min{l,m}

t )

1− ρ2t
, (7)

then ΣNK can be represented in a compact matrix form as

ΣNK = ΣK ⊗ΣN , (8)
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where, ⊗ is the Kronecker product and ΣK is defined in (5).
Sensors collect N samples and forward the samples to the FC
over noiseless orthogonal Multiple Access Channels (MAC).
For this particular detection task, we assume a Neyman-Pearson
framework where the detection probability (Pd,fc) is maximized
under a constraint on the false alarm probability at the FC (Pf,fc).
The FC performs the Likelihood Ratio Test (LRT) and com-
pares the test statistic to a threshold.

3.2. Heterogeneous System Characterization
We denote the kth sensor’s observations as xk = [xk[1], xk[2],
· · · , xk[N ]]T and x = [x1

T ,x2
T , · · · ,xK

T ]T . Here x is
multivariate Gaussian with covariance matrix ΣNK , given as
in (6) and (8). Application of LRT yields Pf,fc as

Pf,fc = Q

 τfc√
A2 1TNKΣ−1

NK1NK

 , (9)

where τfc is the decision threshold and 1NK is a NK dimen-

sional vector with all ones. Q(x) =
∫∞
x

1√
2π

e−
z2k
2 dzk is the

complementary cumulative distribution function of the standard
Gaussian random variable. Similarly Pd,fc is given as

Pd,fc = Q
(
Q−1(Pf,fc)−

√
A2 1TNKΣ−1

NK1NK

)
. (10)

We now state an important lemma and a couple of propositions
which are used to derive diversity. The proofs are omitted due
to space constraints.

Lemma 1.

1TNKΣ−1
NK1NK = 1TKΣ−1

K 1K × 1TNΣ−1
N 1N

where 1NK ∈ RNK , 1K ∈ RK and 1N ∈ RN represent
vectors containing all ones of respective lengths.

Proposition 1.

1TKΣ−1
k 1K =

[
((K − 2)ρs + 1)

∑K
i=1

1
σ2
i
− 2ρs

∑
k 6=k′

1
σkσk′

]
1 + (K − 2)ρs − (K − 1)ρ2s

where 1K ∈ RK is the vector of all ones and ΣK is given in (5).

Proposition 2.

1TNΣ−1
N 1N = (N − 1)(ρ2t − 2ρt) +N (11)

where 1 ∈ RN is the vector of all ones and ΣN is given in (7).

For the system considered, U is the detection probability Pd,fc
and U0 = Pd,fc = 0.5 is the point which captures the diversity
of the system. Q is the SNR of the heterogeneous system,

SNR =
1

K

K∑
k=1

A2

σ2
k

, (12)

which is the average SNR as seen by each channel at a given
time instant. This is a generalized version of the definition used
in [12], as it can handle heterogeneous channels (different chan-
nel variances). Using the definition of diversity in Definition 1,
we have Theorem 1.

Theorem 1. Diversity of an inference system performing a
detection task using a distributed sensor network with spatio-
temporally dependent data following (3) and (4), is given by

D(N,K, ρs, ρt) =

1

2
√
2π

√
1TNΣ−1

N 1N × 1TKΣ−1
K 1K

A2

K∑K
k=1

1
σ2
k

, (13)

where 1TNΣ−1
N 1N and 1TKΣ−1

K 1K are given by Propositions 1
and 2 respectively.

Proof. Defining t = Q−1(Pf,fc)−
√
A2 1TNKΣ−1

NK1NK and
using the chain rule for differentiation,

∂Pd,fc
∂SNR

=
∂Pd,fc
∂t

∂t

∂SNR
. (14)

Using Lemma 1, the second term of (14) is

∂t

∂SNR
==− 1

2

√
1TNΣ−1

N 1N × 1TKΣ−1
K 1K

A2

K∑K
k=1

1
σ2
k

.

Now, using Q function, ∂Pd,fc

∂t
= − 1√

2π
e−

t2

2 . Therefore,

∂Pd,fc
∂SNR

∣∣∣∣
Pd,fc=0.5

=
1

2
√
2π

√
1TNΣ−1

N 1N × 1TKΣ−1
K 1K

A2

K∑K
k=1

1
σ2
k

e−

(
Q−1(Pfa,fc)−

√
A2 1T

NK
Σ
−1
NK

1NK

)2

2

∣∣∣∣
Pd,fc=0.5

.

(15)

WithU0 = Q

[
Q−1(Pfa,fc)−

√
A2 1TNKΣ−1

NK1NK

]
= 0.5,

D =
1

2
√
2π

√
1TNΣ−1

N 1N × 1TKΣ−1
K 1K

A2

K∑K
k=1

1
σ2
k

.

The above derivation used the fact that the overall covariance
matrix could be decomposed as the Kronecker product of tem-
poral and spatial covariance matrices. As a consequence, sys-
tem diversity can be decomposed into temporal and spatial di-
versity. Therefore, for systems where the covariance matrix can
be decomposed as above, system diversity using this particular
definition [12] can also be decomposed into temporal and spa-
tial diversity.

Following corollaries are the results for special cases of
systems arising from Theorem 1.

Corollary 1. For the inference system given in Theorem 1 with
homogeneous channels, i.e., σ2

k = σ2, diversity grows as
D(N,K, ρs, ρt)

∼ O
((

K(1−ρs)
1+(K−2)ρs−(K−1)ρ2s

) (
(N − 1)(ρ2t − 2ρt) +N

))
,

where the notation O(·) refers to diversity order and indicates
that the diversity is proportional to the argument of O(·).

Corollary 2. For the inference system given in Theorem 1 with
only time-dependent data and data independence across space,
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Fig. 1. Diversity order vs ρt for different ρs and (N,K) pairs.

the diversity is of order D(N,K, 0, ρt)
∼ O

(
K
(
(N − 1)(ρ2t − 2ρt) +N

))
.

Corollary 3. For the inference system given in Theorem 1 with
only spatially-dependent data and temporal independence, di-
versity grows asD(N,K, ρs, 0) ∼ O

(
K(1−ρs)

1+(K−2)ρs−(K−1)ρ2s
N
)

.

Corollary 4. For the inference system given in Theorem 1 with
data independence across both time and space, diversity is of
order D(N,K, 0, 0) ∼ O(KN) [12].

3.3. Simulation Results
We illustrate the analytical results derived in the previous sec-
tion via simulations. In order to study and highlight the effect
of temporal and spatial dependence, we assume σ2

k = σ2. In
Fig. 1, we plot the diversity order as a function of ρt. Notice
that the diversity order falls as dependence increases. It is inter-
esting to note that the rate of fall of diversity order is different
for different pairs of (N,K). We observe a similar degrada-
tion of performance as ρs increases when we plot the diversity
order with ρs in Fig. 2. In Fig. 3, we plot the diversity order
with N for K = 3. As evident from Corollary 2, the diversity
order is a linear function of N and performance degrades with
increasing ρt. Finally, in Fig. 4, we plot the diversity order
with varying K for N = 5. Here the effect of increasing K is
not linear on the diversity order if ρs 6= 0. From Fig. 3, we
notice that the diversity order increases with N but it decreases
rapidly with increasing ρt. On comparison with Fig. 4, we see
that the diversity order still increases with increasing K but it
falls with increasing ρs. Although the degradation in diversity
order is more, the fall is gradual compared to Fig. 3 as also
evident from Figs. 1 and 2.
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4. DISCUSSION

As evident from earlier discussions, diversity is governed by
the system parameters, for example, the inference system dis-
cussed above has two design parameters that affect the perfor-
mance of the system, number of sensors K and number of ob-
servations N per sensor. However, both these resources come
at a cost. For a system with spatio-temporal independence, the
task of choosing N and K is straightforward. For a centralized
detection system, choosing (N,K) pairs is symmetric when
data is independent. However, when there is spatio-temporal
dependence in the system, there exists an interplay between
the choice of (N,K) pairs for different (ρt, ρs) pairs (refer to
Sec. 3.3). Therefore, as a stepping stone for future work, we
propose to divide such inference systems into categories based
on the amount of spatial and temporal dependence present in
the system. This will make the job of a system designer easier
in choosing the (N,K) pairs. For example, the systems can
be divided into four main categories as: (low ρt, low ρs), (low
ρt, high ρs), (high ρt, low ρs) and finally (high ρt, high ρs).
The system designer can choose N and K based on these 4
categories, to have the best performance.

In this work, we proposed a unified definition of diversity
for a general inference system and showed it’s applicability for
systems performing various tasks. Moreover, as an example of
its use, we provided a thorough analysis of an inference system
performing a detection task with heterogeneous and dependent
data. To the best of our knowledge this work is the first to
characterize the notion of diversity in IoT systems. A major
application of the proposed framework is in IoT framework as
they are composed of heterogeneous sensors collecting corre-
lated data for various tasks.
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