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ABSTRACT

This paper considers the problem of detecting changes in utility max-
imizing behaviour of agents in online social media. Such changes in
utility maximizing behaviour in online social media occur due to
the effect of marketing, advertising, or changes in ground truth. In
contrast to traditional signal processing techniques, our approach is
data-centric. We use the framework of revealed preference to detect
the unknown time point (change point) at which the utility function
changed. We derive necessary and sufficient conditions for detect-
ing the change point. In addition, we provide an algorithm to recover
the utility function before and after the change point. The results de-
veloped are illustrated on the Yahoo! Tech Buzz dataset. From the
dataset, we obtain the following useful insights: First, the changes
in ground truth affecting the utility of the agent can be detected by
utility maximization behaviour in online search. Second, the recov-
ered utility functions satisfy the single crossing property indicating
strategic substitute behaviour in online search.

Index Terms— Social media, utility maximization, revealed
preference, change point detection

1. INTRODUCTION

This paper deals with the problem of non-parametric change detec-
tion of utility maximizing behaviour in online social media. The
problem we consider is fundamentally different to the theme used
widely in the signal processing literature, where one postulates an
objective function (typically convex) and then develops optimization
algorithms. In contrast, the revealed preference framework, consid-
ered in this paper, is data centric - given a dataset, we wish to de-
termine if is consistent with utility maximization, and then detect
changes in the utility function based on the observed behaviour.

The problem of non-parametric detection of utility maximizing
behaviour is the central theme in the area of revealed preferences
in microeconomics. Revealed preference in microeconomics, aims
to answer the following question: Given a dataset, D, consisting of
probe, pt ∈ Rm

+ , and response, xt ∈ IRm
+ , of an agent for T time

instants:
D = {(pt, xt), t = 1, 2, . . . , T} , (1)

Is the dataset in (1) consistent with utility-maximization behaviour
of an agent? A utility-maximization behaviour (or utility maximizer)
is defined as follows:

The full version of the paper [1] has been accepted to IEEE Transactions
on Signal Processing

Definition 1.1. An agent is a utility maximizer if, at each time t, for
input probe pt, the output response, xt, satisfies

xt = x(pt) ∈ argmaxu(x)
{p′tx≤It}

. (2)

Here, u(x) denotes a locally non-satiated1 utility function2. Also,
It ∈ R+, is the total resource or the budget of the agent. The linear
constraint, p′tx ≤ It impose a budget constraint on the agent, where
p′tx denotes the inner product between pt and x.

Major contributions to revealed preference are due to Samuel-
son [2], Afriat [3], Varian [4], and Diewert [5] in the microeconomics
literature. Afriat [3] devised a nonparametric test (called Afriat’s
theorem), which provides necessary and sufficient conditions to de-
tect utility maximizing behaviour for a dataset. For an agent satisfy-
ing utility maximization, Afriat’s theorem [3] provides a method to
construct a utility function consistent with the data. The utility func-
tion, so obtained, can be used to predict future response of the agent.
Varian [6] provides a comprehensive survey of revealed preference
literature.

Despite being originally developed in economics, there has been
some recent work on application of revealed preference to social
networks and signal processing. In the signal processing literature,
revealed preference framework was used for detection of malicious
nodes in a social network in [7, 8] and in demand estimation in smart
grids in [9, 10]. [11] analyzes social behaviour and friendship forma-
tion using revealed preference among high school friends. In online
social networks, [12] uses revealed preference to obtain information
about products from bidding behaviour in eBay or similar bidding
networks.

In this paper, we extend revealed preference framework to agents
with dynamic utility functions. The utility function jump changes at
an unknown time instant by a linear perturbation. Given the dataset
of probe and responses of an agent, the objective is to develop a
nonparametric test to detect the change time and the utility functions
before and after the change.

Such utility change point detection problems arise in online
search in social media. The online search is currently the most
popular method for information retrieval [13]. There has been a
gamut of research which links internet search behaviour to ground

1Local non-satiation means that for any point, x, there exists another
point, y, within an ε distance (i.e. ‖x − y‖ ≤ ε), such that the point y
provides a higher utility than x (i.e. u(x) < u(y)).

2The utility function is a function that captures the preference of the agent.
For example, if x is preferred to y, u(x) ≥ u(y).
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truths such as symptoms of illness, political election, or major sport-
ing events [14, 15, 16, 17, 18, 19]. Hence, a change in the utility
in the online search corresponds to change in ground truth or ex-
ogenous events affecting the utility of agent, such as the onset of
disease or the announcement of major political decision. Detection
of utility change in online social behaviour, therefore, is helpful
to identify changes in ground truth and useful, for example, for
early containment of diseases [15] or predicting changes in political
opinion [20, 21]. Also, the intrinsic nature of the online search
utility function motivates such a study under a revealed preference
framework.

The problem of detecting a linear perturbation change in the util-
ity function is motivated by several reasons. First, it provides suffi-
cient selectivity such that the non-parametric test is not trivially sat-
isfied by all datasets but still provides enough degrees of freedom.
Second, the linear perturbation can be interpreted as the change in
the marginal rate of utility relative to a “base” utility function. In on-
line social media, the linear perturbation coefficients measure the
impact of marketing or the measure of severity of the change in
ground truth on the utility of the agent. This is similar to the lin-
ear perturbation models used to model taste changes [22, 23, 24, 25]
in microeconomics. Finally, in social networks, linear change in the
utility is usually used to model the change in utility of an agent based
on the interaction with the agent’s neighbours [26]. Compared to the
taste change model, our model is unique in that we allow the lin-
ear perturbation to be introduced at an unknown time. To the best
of our knowledge, this is the first time in the literature that change
point detection problem has been studied in the revealed preference
setting.

The organization of the paper is as follows: In Sec. 2, we de-
rive necessary and sufficient conditions for change point detection,
for dynamic utility maximizing agents under the revealed preference
framework. Section 3 illustrates the result on the Yahoo! Tech Buzz
dataset. Concluding remarks are offered in Section 4.

2. UTILITY CHANGE POINT DETECTION

In this section, we extend the revealed preference framework and
consider agents whose change in utility function can be modelled by
linear perturbations. We state below Afriat’s theorem3for a dataset
in (1) to satisfy utility maximization model in (2).

Theorem 2.1 (Afriat’s Theorem [3]). Given a dataset D in (1), the
following statements are equivalent:

1. The agent is a utility maximizer and there exists a mono-
tonically increasing4 and concave utility function that satis-
fies (2).

2. For scalars ut and λt > 0 the following set of inequalities
has a feasible solution:

us − ut − λtp
′
t(xs − xt) ≤ 0 ∀t, s ∈ {1, 2, . . . , T}. (3)

3To the signal processing reader unfamiliar with this theorem, it can be
viewed as a set-valued system identification method for an argmax nonlin-
ear system with a constraint on the inner product of the probe and response of
a system. Afriat’s theorem has several interesting consequences including the
fact that if a dataset is consistent with utility maximization, then it is rational-
izable by a concave, monotone and continuous utility function. Hence, the
preference of the agent represented by a concave utility function can never
be refuted based on a finite dataset.

4In this paper, we use monotone and local non-satiation interchangeably.
Afriat’s theorem was originally stated for a non-satiated utility function.

3. A monotonic and concave utility function that satisfies (2) is
given by:

u(x) = min
t∈{1,2,...,T}

{ut + λtp
′
t(x− xt)} (4)

4. The dataset D satisfies the Generalized Axiom of Revealed
Preference (GARP), namely for any t ≤ T , p′txt ≥ p′txt+1 ∀t ≤
k − 1 =⇒ p′kxk ≤ p′kx1.

2.1. System Model: Dynamic utility maximization

Consider an agent who selects x, at time t to maximize the utility
function given by:

u(x, α; t) = v(x) + α′x1{t ≥ τ}, (5)

subject to the following linear constraint p′tx ≤ It. Here, 1{·} de-
notes the indicator function and α = (α1, α2, . . . , αm) denotes the
m-dimensional linear perturbation vector. In contrast to the static
utility function in (2), the utility function, u(x, α; t), in (5), con-
sists of two components: a base utility function, v(x), and a lin-
ear perturbation, α′x, which occurs at an unknown time τ . The
utility function, u(x, α; t) is assumed to be monotonic5 and con-
cave6conditioned on α. We will restrict the components of the
vector α to be (strictly) greater than 0, so that the utility function,
u, conditioned on α is monotonic. The objective is to devise Afriat
type inequalities to detect the time, τ at which linear perturbation
is introduced to the base utility function. Theorem 2.2 summarizes
the necessary and sufficient conditions to detect the change in utility
function according to the model in (5) and the proof is provided in
the Appendix.

Theorem 2.2. The dataset in (1) is consistent with the model in (5),
if we can find sets {vt}t=1,...,T , {λt > 0}t=1,...,T , {αk}k=1,...,m,
such that there exists a feasible solution to the following inequalities:

vt + λtp
′
t(xs − xt) ≥ vs (t < τ) (6)

vt + λtp
′
t(xs − xt)− α′(xs − xt) ≥ vs (t ≥ τ) (7)

αi ≤ λtp
i
t (∀i, t ≥ τ), (8)

where αi and pit are the ith component of the linear perturbation α
and probe vector pt, respectively.

Note that the inequalities in (6) to (8) closely resemble the Afriat
inequalities in (3). The time step, τ at which the inequalities are
satisfied is the time at which the linear perturbation is introduced.

2.2. Recovery of minimum linear perturbation coefficients and
base utility function

Computing the linear perturbation coefficients gives an indication of
the severity of the ground truth or the effect of marketing and adver-
tising. The solution to the following convex optimization provides

5Monotone utility function models the human preference: more is pre-
ferred to less.

6Concavity of utility function models the human preference: averages
are better than the extremes. It is also related to the law of diminishing
marginal utility, i.e. the rate of utility decreases with x. One of the most
widely used utility function is the Cobb-Douglas utility function which has
the form u(x, y) = xay1−a, 0 < a < 1, in 2-dimension.
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the minimum value of the perturbation coefficients:

min ‖α‖22 (9)

s.t. vt + λtp
′
t(xs − xt) ≥ vs (t < τ) (10)

vt + λtp
′
t(xs − xt)− α′(xs − xt)≥ vs (t ≥ τ) (11)

αi ≤ λtp
i
t(∀i, t ≥ τ) (12)

λt > 0 (13)
v1 = β, λ1 = δ, (14)

where, β and δ are arbitrary constants.
The equations (10) to (12) correspond to the revealed preference

inequalities. The normalization conditions (14) are required because
of the ordinality7 of the utility function. This is because for any
set of feasible values of {vt}t=1,...,T , {λt}t=1,...,T , {αk}k=1,...,m

satisfying the constraints in Theorem 2.2 the following relation also
holds

β(vs + δ)− β(vt + δ)− βλtp
′
t(xs − xt) + βα′(xs − xt) ≤ 0.

Recall, the base utility function is the utility function before the
linear change.

Corollary 2.1. The recovered base utility function is given by

v̂(x) = min
t
{vt + λtp̃

′
t(x− xt)}, (15)

where

p̃it =

{
pit t < τ,

pit − αi/λt t ≥ τ,
(16)

where {vt}, {λt}, {αk} are the solution of (9) to (14).

The recovery of the base utility function in (15) is similar to (4)
in Afriat’s Theorem, except that the probe has been “adjusted” for
the linear perturbation coefficients.

3. REAL DATASET (YAHOO! BUZZ GAME)

In this section, we present an example of a real dataset of online
search process. The objective is to investigate the utility maximiza-
tion of the online search process and to detect change points or un-
known time at which the utility has changed. The change points give
valuable information on when the ground truths have changed.

The dataset that we use in our study is the Yahoo! Buzz Game
Transactions from the Webscope datasets8 available from Yahoo!
Labs. In 2005, Yahoo! along with O’Reilly Media started a fan-
tasy market where the trending technologies at that point where pit-
ted against each other. The players in the game have access to the
“buzz”, which is the online search index, measured by the number
of people searching on the Yahoo! search engine for the technology.
The objective of the game is to use the buzz and trade stocks accord-
ingly. The interested reader is referred to [27] for an overview of
the Buzz game. An empirical study of the dataset [28] reveal that
most of the traders in the Buzz game follow a utility maximizing
behaviour. Hence, the dataset falls within the revealed preference
framework, if we consider the buzz as the probe and the “trading
price9” as the response to the utility maximizing behaviour.

7Clearly any positive monotonic transformation of u(x) in (2) gives the
same response.

8Yahoo! Webscope dataset: A2 - Yahoo! Buzz Game Transac-
tions with Buzz Scores, version 1.0 http://research.yahoo.com/
Academic_Relations

9The trading price is indicative of the value of the stock.

We consider a subset of the dataset containing only the “WIRE-
LESS” market which contained two main competing technologies:
“WIFI” and “WIMAX”. Figure 1 shows the buzz and the “trading
price” of the technologies starting from April 1 to April 29. The
buzz is published by Yahoo! at the start of each day and the “trad-
ing price” was computed as the average of the trading price of the
stock for each day. Choosing the probe and response vector for this
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Fig. 1: Buzz scores and trading price for WIFI and WIMAX in the
WIRELESS market from April 1 to April 29. The change point was
estimated as April 18. This corresponds to a new WIFI product an-
nouncement. The change can also be observed due to the sudden
peak of interest in WIFI around April 18.

dataset as follows:

pt = [Buzz(WIFI) Buzz(WIMAX)]

xt = [Trading price(WIFI) Trading price(WIMAX)] .

We find that the dataset does not satisfy utility maximization for
the entire duration from April 1 to April 29, i.e. the Afriat inequali-
ties (3) are not satisfied. However, we find that the dataset satisfies
utility maximization from April 1 to April 17. Using the inequali-
ties (6) to (8), that we derived in Sec 2, for the model in (5), we see
that utility has changed with change point, τ , set to April 18.This
correspond to a change in the ground truth which affected the utility
of the agents. Indeed, we find that the change point corresponds to
Intel’s announcement of WIMAX chip10.

Also, by minimizing the 2-norm of the linear perturbation, we
find that the recovered linear coefficients which correspond to mini-
mum perturbation is α = [0 5.9]. This is inline with what we expect,
a positive change in the WIMAX utility, due to the change in ground
truth. Furthermore, the recovered utility function, v(x), is shown in
Fig. 2a and the indifference curve (or contour plot) of the base utility
is shown in Fig. 2b.

The recovered base utility function in Fig. 2a satisfy the single
crossing condition11indicating strategic substitute behaviour in on-
line search. The substitute behaviour in online search can also be

10http://www.dailywireless.org/2005/04/17/
intel-shipping-wimax-silicon/

11Utility function, U(x1, x2), satisfy the single crossing condition if
∀ x′1 > x1, x′2 > x2, we have U(x′1, x2) − U(x1, x2) ≥ 0 =⇒
U(x′1, x

′
2) − U(x1, x′2) ≥ 0. The single crossing condition is an ordinal

condition and therefore compatible with Afriat’s test.
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Fig. 2: Fig. 2a shows the recovered utility function v(x) using (15). Indifference curve of the recovered utility function, is shown in Fig. 2b.
The indifference curve suggest the substitution behaviour in online search.

noticed from the indifference curve in Fig. 2b. This is due to the
fact that WIFI and WIMAX were competing technologies for the
problem of providing wireless local area network.

4. CONCLUSION

In this paper, we derived data driven methods for change point de-
tection. We extended Afriat’s theorem for agents with dynamic util-
ity function. The online search process was considered as an illus-
trative example of an agent with dynamic utility function, whose
utility is affected by ground truths. The main result, from Theo-
rem 2.2, is deriving necessary and sufficient conditions to compute
the change point at which the utility function jump changes by a lin-
ear perturbation. In addition, we provided an algorithm for detecting
the unknown change point and recovering the utility function before
and after the change point. The results were applied on the Yahoo!
Tech Buzz dataset and the estimated change point corresponds to the
change in ground truth.

Appendix: Proof of Theorem 2.2

Necessary Condition: Assume that the data has been generated by
the model in (5). An optimal interior point solution to the problem
must satisfy:

5xi
t
v(xt) = λtp

i
t (t < τ) (17)

5xi
t
v(xt) + αi = λtp

i
t (t ≥ τ) (18)

At time t, the concavity of the utility function implies:

u(xt, α, t) +5xtu(xt, α, t)
′(xs − xt) ≥ u(xs, α, t) ∀s. (19)

Substituting the first order conditions (17) and (18) into (19), yields

v(xt) + λtp
′
t(xs − xt) ≥ v(xs) (t < τ) (20)

v(xt) + λtp
′
t(xs − xt)− α′(xs − xt) ≥ v(xs) (t ≥ τ) (21)

Denoting v(xt) = vt gives (6) and (7). (8) comes from the fact the
utility function v(x) is monotonic increasing.

Sufficient Condition: We first construct a piecewise linear utility
function V(x) from the lower envelope of the T overestimates, to
approximate the function v(x) defined in (5),

V(x) = min
t
{vt + λtp̃

′
t(x− xt)}, (22)

where each coordinate of p̃t is defined as,

p̃it =

{
pit t < τ

pit − αi/λt t ≥ τ
(23)

To verify that the construction in (22) is indeed correct, consider an
arbitrary response, x̂, such that: p′tx̂ ≤ p′txt

12. We need to show
V(x̂) + α′x̂ ≤ V(xt) + α′xt.

First, we show that V(xt) = vt∀t as follows: From (22), for
some m,

V(xt) = vm + λmp̃
′
m(xt − xm),

If, m ≥ τ ,

V(xt) = vm + λmp̃
′
m(xt − xm)

= vm + λmp
′
m(xt − xm)− α′(xt − xm)

≤ vt + λtp
′
t(xt − xt)

= vt

If the inequality is true, then it would violate (21). Using similar
technique, we obtain, if m < τ , V(xt) = vt. Hence, V(xt) = vt.

Next, we show V(x̂) + α′x̂ ≤ V(xt) + α′xt. If, t ≥ τ ,

V(x̂) + α′x̂ ≤ vt + λtp̃
′
t(x̂− xt) + α′x̂

= vt + λtp
′
t(x̂− xt)− α′(x̂− xt) + α′x̂

= vt + λtp
′
t(x̂− xt) + α′xt

≤ vt + α′xt = V(xt) + α′xt

The inequality holds, similarly, for the case t < τ . Therefore, we can
construct a utility function that is consistent with the data satisfying
the model in (5).

12In microeconomic theory, xt is said to be “revealed preferred” to x̂.
Since xt was chosen as response for the probe pt, the utility at xt should
be higher than the utility at x̂.
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