
QUICKEST CHANGE DETECTION WITH UNKNOWN POST-CHANGE DISTRIBUTION

Tze Siong Lau and Wee Peng Tay∗

Nanyang Technological University
School of Electrical and Electronic Engineering

50 Nanyang Avenue, Singapore 639798

Venugopal V. Veeravalli†

University of Illinois at Urbana-Champaign
ECE Dept. and Coordinated Science Lab

Urbana, IL, 61801, USA

ABSTRACT

This paper considers the problem of quickest detection of a change
in distribution under the assumption that the pre-change distribution
π is known, and the post-change distribution µ is unknown and be-
longs to a general class of distributions. Using the knowledge of the
pre-change distribution π, the sample space is partitioned into equi-
probable intervals and the number of samples falling into each of
these intervals is monitored to detect the change. A test statistic that
approximates the generalized likelihood ratio test is proposed. A re-
cursive update scheme to compute the statistic efficiently and an ap-
proximation of the average run-length to false alarm are also derived.
Simulations show that our approach is comparable in performance to
two other non-parametric quickest change detection methods if the
change is either a shift in distribution mean or variance, respectively.
But our method significantly outperforms them if these distribution
change assumptions are violated.

Index Terms— Quickest change detection, unknown post-
change distribution, non-parametric, ARL approximation, GLRT

1. INTRODUCTION

Quickest change detection (QCD) is a fundamental problem in statis-
tics. Given a sequence of independent and identically distributed
(i.i.d.) observations {xt : t ∈ N} with distribution π up to an un-
known change point ν and are i.i.d. with distribution µ 6= π after.
Subject to false alarm constraints, the goal is to detect this change
as quickly as possible. For the case when the pre- and post-change
distributions are known, Page [16] developed the Cumulative Sum
Control Chart (CuSum) for quickest change detection. Lorden [11]
showed the optimality of the CuSum test as the false alarm rate goes
to zero, and it was later established by Moustakides [13] that the
CuSum test is exactly optimal under Lorden’s optimality criterion.
Lai showed in [7] that the CuSum test is asymptotic optimum under
the Pollak’s criterion [17], as the false alarm rate goes to zero.

The problem of QCD arises in many situations. Traditionally,
QCD has found applications in manufacturing such as quality con-
trol where any deviation in the quality of products must be quickly
detected. However, with the increase in the amount and types of data
modern-day sensors are able to obtain, QCD methods have applica-
tions in the areas of bioinformatics [14], network surveillance [1,20],
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fraud detection [3], structural health monitoring [23], spam detec-
tion [25], etc. In many of these applications, the detection algorithm
has to operate in real time with reasonable computation complexity.

In this paper, we consider the problem of QCD with an unknown
post-change distribution. The observer has complete knowledge of
the pre-change distribution and no knowledge of the post-change dis-
tribution. We seek to design a detection algorithm that allows us to
quickly detect the change, under false alarm constraints, with low
complexity methods. To solve this problem, we propose a new test
statistic that approximates the CuSum statistic which can be updated
sequentially in a manner similar to the CuSum statistic. We also pro-
pose an approximation for the average run length to false alarm to
facilitate the setting of the detection threshold in applications.

There are many existing works in the area of QCD that consider
the problem where the post-change distribution is unknown to a cer-
tain degree. In [22], the authors considered the case where the post-
change distribution belongs to a one-parameter exponential family
with the pre-change distribution being known. The case when both
the pre- and post-change distribution belong to a one-parameter ex-
ponential family is consider by Lai in [7]. In [2], the authors de-
veloped a data-efficient scheme that allows for optional sampling
of the observations in the case when either the post-change family
of distributions is finite, or both the pre- and post-change distribu-
tion belong to a one parameter exponential family. Classical ap-
proaches to the QCD problem without strong distributional assump-
tions can be found in [5, 6]. Although there are no distributional
assumptions, the type of change expected in [5, 6] is a shift in the
mean and in [19], a shift in the scale of the observations. In [10],
the authors provided a kernel-based detection scheme for a change-
point detection problem where the post-change distribution is com-
pletely unknown. However, the kernel-based detection scheme re-
quires a choice of a proper kernel. In these works, although there
are no strong distributional assumptions on the post-change distribu-
tions, some knowledge about the type of change expected is required
from the observer. The present study requires less information from
the observer about the type of change expected as it only requires
the observer to set a parameter N . The authors of [15], developed
an asymptotically optimal universally scheme to isolate an outlier
data stream which experiences a change from a large pool of typical
streams. In [6, 10, 12, 18], the authors approached the problem from
the viewpoint of a two-sample test. In [12], the authors use an em-
pirical divergence measure developed in [24] to compare sequences
before and after the estimated change point. Our method differs from
their approach as we do not require storage of previous observations.
Our method utilizes only the information from the current observa-
tion, while all information from previous observations are reduced
to bin counts. Therefore, our method can be performed online with
complexity that is comparable with that of the CuSum test.
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The rest of this paper is organized as follows. In Section 2, we
present our signal model and problem formulation. In Section 3,
we present the generalized likelihood ratio test (GLRT) based QCD
procedure and propose an approximation that can be computed effi-
ciently. In Section 4, we present numerical simulations to illustrate
the performance of our algorithm. We conclude in Section 5.

2. PROBLEM FORMULATION

Let (R,F) be a measurable space, where R is the set of real num-
bers. Let π be the pre-change distribution, and µ be a post-change
distribution such that π 6= µ. Let X1, X2, . . . be a random sequence
of observations taking values in R, and satisfying the following:{

Xt ∼ π i.i.d. for all t < ν,

Xt ∼ µ i.i.d. for all t ≥ ν,
(1)

where ν ≥ 0 is an unknown but deterministic change point. The
QCD problem is to detect the change in distribution as quickly as
possible by observing X1, X2, . . ., while keeping the false alarm
rate low. In the classical QCD problem, both π and µ are assumed to
be known. In this paper, we assume that the observer only knows the
pre-change distribution π. This assumption is reasonable because
in most practical situations, a large amount of data generated by the
pre-change distribution π is available to the observer who may either
leverage on this data to obtain the exact distribution of π or employ
density estimation schemes [4, 9] to obtain accurate approximations
of π. We also assume that both π and µ are absolutely continuous
distributions with respect to (w.r.t.) the Lebesgue measure. The only
assumptions we have on the post-change distribution µ, is that it
belongs to D(π,N), the set of distributions distinguishable w.r.t.
(π,N) where N is an integer to be chosen by the observer. This set
of distributions is formally defined as follows.

Definition 1. Let I1 = (−∞, z1], I2 = (z1, z2], . . ., and IN =
(zN−1,∞) be a set ofN intervals such that for each i ∈ {1, ..., N},
we have

∫
Ii
dπ(x) = 1

N
. A distribution µ absolutely continuous to

π, is distinguishable from π w.r.t. N if there exists i ∈ {1, ..., N}
such that

∫
Ii
dπ(x) 6=

∫
Ii
dµ(x). The set D(π,N) of distribu-

tions distinguishable w.r.t. (π,N) is the set of all distributions µ
on (R,F) distinguishable from π for the given N .

Restricting the post-change distribution µ to be in D(π,N) is
reasonable as any distribution µ 6= π and absolutely continuous with
respect to π, is distinguishable from π for N sufficiently large. To
see why this is true, let Fπ and Fµ be the cumulative distribution
function of π and µ, respectively. Since both Fπ and Fµ have at
most countably many discontinuities, there exists an interval J such
that for any x ∈ J , Fπ(x) 6= Fµ(x). Then for any N > 1

π(J)
,

µN (i) 6= πN (i) because otherwise Fµ(x) = Fπ(x) for any x such
that x is a boundary point of Ii for some i ∈ {1, ..., N}.

In the QCD problem, an observer obtains the observations
x1, x2, . . . sequentially and aims to detect the the change in distri-
bution from π to µ. Typically, a test statistic S(t) is computed based
on the available observation x1, . . . , xt and the observer makes the
decision that a change has occurred at a stopping time τ , where τ is
the first t such that S(t) exceeds a pre-determined threshold γ:

τ(γ) = inf{t : S(t) > γ}.

We evaluate the performance of the algorithm using the average run
length (ARL) and the average detection delay (ADD) following Pol-

lak’s formulation [17] of the QCD problem:

ARL(γ) = E∞ [τ(γ)] ,

ADD(γ) = sup
ν

Eν [τ(γ)− ν | τ(γ) ≥ ν ] ,

where Eν is the expectation assuming the change point is at ν and
E∞ denotes the expectation when there is no change and all the ob-
servations are distributed according to π.The QCD problem can be
formulated as a minimax problem [17]: find a stopping time τ to
minimize ADD(τ) subject to ARL(τ) ≥ α for some given α. Lor-
den [11] proposed a different measure for detection delay,

WADD(γ) = sup
ν≥1

ess supEν
[
(τ(γ)− ν + 1)+

∣∣X1, ..., Xν−1

]
,

which we do not consider in this work, although our analysis can
easily be extended to incorporate this measure of delay.

3. ALGORITHM DESIGN

3.1. Binned Generalized CuSum (BG-CuSum) statistic

In this section, we propose the BG-CuSum statistic for our problem
by approximating the unknown terms in the CuSum test statistic,
and then propose a recursive method for updating our test statistic.
Finally, we derive an approximation of the ARL of our proposed
change detection algorithm.

Since the post-change distribution µ ∈ D(π,N), we are able to
obtain two categorical distributions µN and πN on the set {1, ..., N}
such that

µN (k) =

∫
Ik

dµ(x), πN (k) =

∫
Ik

dπ(x) =
1

N
,

for k ∈ {1, ..., N}. Abusing notation, for any x ∈ R, we write

µN (x)
.
= µN (i), πN (x)

.
= πN (i),

where i is the unique integer such that x ∈ Ii. If µN and πN are
both known, comparing the log-likelihood ratios of {ν ≤ t} against
{ν > t} given the observations x1, . . . , xt we obtain the test

τ(γ) = inf {t : S(t) > γ} , (2)

where

S(t) = log
max1≤k≤t+1

∏k−1
i=1 πN (xi)

∏t
i=k µN (xi)∏t

i=1 πN (xi)
(3)

= max
1≤k≤t+1

t∑
i=k

log
µN (xi)

πN (xi)
. (4)

Note that S(t) in (4) takes the value 0 if k takes t + 1 in the maxi-
mization. The test in (2) is known as Page’s CuSum test [16] and the
test statistic S(t) has a convenient recursion S(t+1) = max{S(t)+
log

µN (xt+1)

πN (xt+1)
, 0}. In our case µN is not known, thus we replace µN

in (4) with its maximum likelihood estimator

µk:tN (i)
.
=
|{xr : k ≤ r ≤ t and xr ∈ Ii}|

t− (k − 1)

where |E| gives the cardinality of the set E. Note that in computing
µk:tN , we use only the samples xk, . . . , xt. We then have

S(t) ≈ max
1≤k≤t+1

t∑
i=k

log
µk:tN (xi)

πN (xi)
.
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Using the maximum likelihood estimator µk:tN might over-fit the ob-
servations xk, . . . , xt. In order to compensate for this over-fitting,
we choose not to include the current observation xt in the estima-
tion of µ. However, if xt is the first observation occurring in interval
Ik, we have µk:t−1

N (xt) = 0. To prevent this, for a fixed positive
constant R, we define the regularized version of µk:t−1

N as

µ̂k:t−1
N (i)

.
=

{
|{xr :k≤r≤t−1 and xr ∈ Ii}|+R

NR+t−(k−1)
if k ≤ t− 1,

1
N

otherwise,

and thus the test statistics becomes

S(t) ≈ max
1≤k≤t+1

t∑
i=k

log
µ̂k:t−1
N (xi)

πN (xi)
. (5)

In practice, R is of the order of N so that µ̂k:tN (i)− µ̂k:t−1
N (i) given

xt ∈ Ii approaches 1
N

as N → ∞. This controls the variability

of S(t) by controlling range of values which log
µ̂k:t−1
N

(xt+1)

πN (xt+1)
can

take. Computation of this test statistics is inefficient as the estimator
µ̂k:t−1
N needs to be repeatedly recomputed each time a new observa-

tion xt is made, resulting in the computational complexity of S(t)
increasing linearly w.r.t. t. One way to prevent this increase in com-
putational complexity is by searching for a change point from the
previous most likely change point rather than from t = 1, and also
using observations from the previous most likely change point to the
current observation to update the estimator for µ. We propose a the
Binned Generalized CuSum (BG-CuSum) statistic S̃ and test τ as
follows:

S̃(t) = max
λt−1≤k≤t+1

t∑
i=k

log
µ̂
λt−1:i−1

N (xi)

πN (xi)
,

λt−1 = max

{
arg max

λt−2≤k≤t

t−1∑
i=k

log
µ̂
λt−2:i−1

N (xi)

πN (xi)

}
,

τ(γ) = inf{t : S̃(t) > γ}.

The following proposition shows that we can update S̃ recursively.
The proof is omitted here due to space constraints. We refer the
reader to [8] for the full proof.

Proposition 1. For each t ≥ 0, we have the update formula

S̃(t+ 1) = max

{
S̃(t) + log

µ̂λt:tN (xt+1)

πN (xt+1)
, 0

}
,

λt+1 =

{
λt if S̃(t) + log

µ̂
λt:t
N

(xt+1)

πN (xt+1)
> 0,

t+ 2 otherwise,

where S̃(0) = 0 and λ0 = 1.

Similar to the CuSum test, the renewal property of the test statis-
tics implies that the the worst case change-point ν for the ADD is at
ν = 0.

Note thatN is chosen to be fixed in this paper because we aim to
obtain a recursive change detection method with both low time and
storage complexity. In general, for any µ 6= π absolutely continuous
w.r.t. π, if N is sufficiently large, we have µ ∈ D(π,N). Hence,
we will be able to use the test statistics in (5) to distinguish π from
µ if there is sufficient memory and we are able to update (5) with N
increasing as t increases.

3.2. Estimating an upper bound for the ARL

Since the ADD is a function of the post-change distribution and µ is
unknown to the observer, the observer is unable to control the ADD
using γ without additional information of µ. On the other hand, π
is known to the observer. Therefore, the observer is able to use γ
to control the ARL of the proposed algorithm. Following arguments
from Chapter 2 of [21], it can be shown that

ARL(γ) =
E∞ [τ(γ)]

P∞
(
S̃(τ(γ)) ≥ γ

)
where τ(γ) = inf{t : S̃(t) /∈ [0, γ)}, and P∞ and E∞ are the prob-
ability distribution and expectation when there is no change point,
respectively. For a fixed γ that is not too large, E∞ [τ(γ)] and

P∞
(
S̃(τ(γ)) ≥ γ

)
can be computed using Monte Carlo simula-

tions. However, if we wish to search for the smallest γ that achieves
a given ARL, then the required computation becomes onerous. In
the following, we derive an upper bound for ARL(γ), which can be
used as its approximation to tune γ.

In order to obtain the bounds for the ARL, we first note that for
any γ, we have

E∞ [τ(γ)] ≤ E∞ [τ(∞)]

where τ(∞) = inf{t : S̃(t) /∈ [0,∞)}.
We next derive a lower-bound for P∞

(
S̃(τ(γ)) ≥ γ

)
by first

defining an increasing sequence of γi such that

γi =

i∑
j=1

log
N(R+ i− 1)

NR+ i− 1
, (6)

which is the largest possible value of S̃(t) for t ≤ i. We have

P∞
(
S̃(τ(γi)) ≥ γi

)
=

P∞
(
S̃(τ(γi)) ≥ γi

∣∣∣ S̃(τ(γi−1)) ≥ γi−1

)
P∞

(
S̃(τ(γi−1)) ≥ γi−1

)
.

Denoting βi = P∞
(
S̃(τ(γi)) ≥ γi

∣∣∣ S̃(τ(γi−1)) ≥ γi−1

)
, we

have βi = 1−P∞
(
S̃(τ(γi)) < 0

∣∣∣ S̃(τ(γi−1)) ≥ γi−1

)
. Since γi

is a increasing sequence, P∞
(
S̃(τ(γi)) < 0

∣∣∣ S̃(τ(γi−1)) ≥ γi−1

)
is non-increasing in i for i ≥ I , where I is sufficiently large. Thus
βi is a non-decreasing sequence for sufficiently large i. For i ≥ 0,

P∞
(
S̃(τ(γI+i)) ≥ γI+i

)
= βI+iβI+i−1...βI+1P∞

(
S̃(τ(γI)) ≥ γI

)
≥ (βI+1)

iP∞
(
S̃(τ(γI)) ≥ γI

)
.

Putting everything together, we have a semi-analytical expression for
an upper bound for ARL(γI+i):

ARL(γI+i) =
E∞ [τ(γI+i)]

P∞
(
S̃(τ(γI+i)) ≥ γI+i

)
≤ E∞ [τ(∞)]

P∞
(
S̃(τ(γI+i)) ≥ γI+i

)
≤ E∞ [τ(∞)]

(βI+1)iP∞
(
S̃(τ(γI)) ≥ γI

) , (7)
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where E∞ [τ(∞)], βI+1 and P∞
(
S̃(τ(γI)) ≥ γI

)
can be obtained

from Monte Carlo simulations. For γ ∈ (γI+i, γI+i+1) and any
i ≥ 1, we approximate ARL(γ) using linear interpolation from the
values of ARL(γI+i) and ARL(γI+i+1).

4. SIMULATION RESULTS

In this section, we first compare the performance of our proposed
QCD with two other non-parametric change detection methods in the
literature. Then, we compare the upper bound for the ARL obtained
in Section 3.2 with the ARL obtained from Monte Carlo simulations.
In all our simulations, we set the parameters N = 16, R = 16 and
set π ∼ N (0, 1) to be the standard normal distribution.

4.1. Performance of proposed algorithm

In the first case, we compare the performance of our method with [6],
in which it is assumed that the change is a shift in the mean without
additional distributional assumptions. In our simulation, we let the
post-change distribution be N (δ, 1). We control the ARL at 500
and change-point ν = 300 for both methods while varying δ. The
average detection delay is computed from 50000 Monte Carlo trials
and shown in Table 1. We see that our method, despite not assuming
that the change is a mean shift, achieves a comparable ADD as [6].

δ 0.0125 0.75 1.5 2.25 3
Hawkins [6] 274.9 18.1 6.6 4.5 3.9
Our method 63.9 17.9 6.6 3.2 2.3

Table 1. ADD for µ ∼ N (δ, 1) with ARL = 500.

We next consider a shift in variance for the post-change distri-
bution. The method in [6], for example, will not be able to detect
this change accurately as it assumes that the change in distribution
is a shift in mean. Therefore, we also compare our method with the
KS-CPM method [18], which is a non-parametric test that makes
use of the Kolmogorov-Smirnov statistic to contruct a sequential 2-
sample test to test for a change-point. We control the ARL at 500
and change-point ν = 300 for all methods while varying δ for the
post-change distribution µ ∼ N (0, δ2). The average detection de-
lays computed from 50000 Monte Carlo trials are shown in Table
2. We see that our method outperforms both [6] and [18] in the
ADD. Next, we test our method with the post-change distribution

δ 0.2 0.33 0.5 1.5 2
Hawkins [6] 361.3 391.5 438.5 149.6 75.3

KS-CPM [18] 27.2 37.2 84.5.7 140.6 49.2
Our method 10.5 17.4 33.3 45.2 21.5

Table 2. ADD for µ ∼ N (0, δ2) with ARL = 500.

set as µ ∼ Laplace(0, 0.7071), which is the Laplace distribution
with location paramter 0 and scale parameter 0.7071. The location
and scale parameter are chosen such that the first and second order
moments of µ and π are equal. We set the ARL = 500 and two
different values for the change-point ν. We performed 50000 Monte
Carlo trials to obtain Table 3. The results show our method is able to
identify the change from a normal to a Laplace distribution with the
smallest ADD out of the three methods studied.

In Fig. 1, we present some examples of our Monte Carlo tri-
als. In each of the figures, the plot in blue represents the pre-change

ν 50 300
Our method 156 154
Hawkins [6] 592 828

KS-CPM [18] 284 217

Table 3. ADD for µ ∼ Laplace(0, 0.7071) with ARL = 500.

regime and that in red represents the post-change regime. We ob-
serve that in both cases, the test-statistic S̃(t) remains low during
the pre-change regime and quickly rises in the post-change regime.
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Fig. 1. Examples of trial performed for each choice of (a) µ ∼
N (0.2, 1) and (b)µ ∼ N (0, 0.92).

4.2. Approximation of ARL

To approximate the ARL, we set I = 10 and from (6), we obtain
γI = 2.651. We use 106 Monte Carlo trials to compute E∞ [τ(∞)],

βI+1 and P∞
(
S̃(τ(γI)) ≥ γI

)
. We obtain E∞ [τ(∞)] = 4.31,

βI+1 = 0.59 and P∞
(
S̃(τ(γI)) ≥ γI

)
= 8.2 × 10−4. Thus we

obtain the upper bound.

ARL(γI+i) ≥ ÂRL(γI+i) =
4.31× 104

8.2(0.59)i

We test this upper bound by computing the ARL(γi) for different
values of i and present the results in Table 4. We see that ÂRL
approximates the true ARL well and starts to deviate significantly
from it only when the ARL is very large.

i 1 2 3 4 5
ARL(γi) 8850 15129 25891 42394 71497
ÂRL(γi) 8979 15339 26205 44767 76476

Table 4. Approximation of ARL

5. CONCLUSION

We have studied the QCD problem when the pre-change distribu-
tion π is known, and the post-change distribution µ is unknown but
belongs to the set D(π,N). We proposed an algorithm that allows
sequential updates to perform QCD. We also derived an upper bound
of the ARL, which can be used as an approximation to the true ARL
for the tuning of the detection threshold γ. The numerical simula-
tions we ran suggest that the BG-CuSum test outperforms the non-
parametric tests studied in [6] and [18]. We also verified that our
approximation for the ARL is quite accurate.
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