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ABSTRACT
We consider a change detection problem with an unknown post-

change parameter. The optimal algorithm in minimizing worst case
detection delay subject to a constraint on average run length, re-
ferred as parallel CUSUM, is computationally expensive. We pro-
pose a low complexity algorithm based on parameter estimation us-
ing Kiefer-Wolfowitz (KW) method with CUSUM based change de-
tection. We also consider a variant of KW method where the tuning
sequences of KW method are reset periodically. We study the per-
formance under the Gaussian mean change model. Our results show
that reset KW-CUSUM performs close to the parallel CUSUM in
terms of worst case delay versus average run length. Non-reset KW-
CUSUM algorithm has smaller probability of false alarm compared
to the existing algorithms, when run over a finite duration.

Index Terms— Kiefer-Wolfowitz algorithm, CUSUM, false
alarm probability, average run length, Detection delay

1. INTRODUCTION AND SYSTEM MODEL

The problem of change detection using statistical tests has been stud-
ied over several decades [1–5]. In this paper, we consider the prob-
lem of change detection when the post-change distribution has an
unknown parameter. Let {fθ, θ ∈ R} denote a family of probabil-
ity density functions parameterized by θ. The observation at time n
is denoted as Yn. Let ν ∈ N+ denote the change point such that
the observations before and after change follow different statistics.
We assume ν to be a unknown non-random value. Specifically, the
observations {Yn}, n ≥ 1 are independent and follow the statistics

Yn ∼
{
fθ0 n < ν
fθ̄ n ≥ ν . (1)

Here, the value of θ0 is known but θ̄ is unknown apriori. However,
it is known that θ̄ ∈ Θ1 where Θ1 ⊂ R is a known set. For ease
of presentation, we first consider the case of Θ1 being a discrete set.
Later in Section 3.3, we address the case of Θ1 being a continuous
set. We are interested in developing algorithms to detect the change
quickly and reliably. Specifically, we are interested in the following
quantities, probability of false alarm Pf , average run length τr and
average detection delay τd and worst-case detection delay τw. We
use Pν to denote the probability measure (and Eν for expectation)
when the change point is ν. We use ν = ∞ for the no change case.
With T being the time at which the algorithm declares the change
(which is random), we have

Pf = P∞{T <∞}, (2)
τr = E∞{T}, (3)
τd = Eν{(T − ν)|T ≥ ν}. (4)

Pf is a well studied criterion when the change point is random with
a prior distribution [6]. In the non-random setting for change point,
several algorithms including the conventional CUSUM algorithm
will always raise false alarm (Pf = 1) when run over infinite time
duration [3]. In such cases, τr - the average time the algorithm takes
to raise a false alarm (2), is a quantity of interest [1]. Alternative
minimax formulations on false alarm criteria have been proposed
in [7]. The detection delay τd defined in (4) may depend on the
change point. Hence, another quantity of significance is the worst-
case detection delay τw defined as

τw = sup
ν≥1

Eν{(T − ν)|T ≥ ν} = sup
ν≥1

τd. (5)

The above definition (5) of worst case detection delay was originally
studied in [2].

2. PRELIMINARIES AND RELATED WORK

2.1. Regression Function

For convenience, we define Θ = θ0 ∪ Θ1, which is a discrete set
containing all the possible parameters for the observation statistics.
Also, let I ⊂ R be the smallest interval such that Θ ⊂ I and I may
be finite or not. For θ ∈ I , we define the log-likelihood ratio (LLR)
of the observations parameterized by θ as

Lθ(Yn) = log
fθ(Yn)

fθ0(Yn)
. (6)

We define the expected value of LLR as

G(θ) = Eν{Lθ(Yn)}, ∀θ ∈ I, (7)

where the expectation is taken over the true distribution of Yn. Since
the true distribution differs before and after change, we sometimes
use the explicit notation Gb(θ) and Ga(θ) to denote the regres-
sion function G(θ) before and after change, respectively. We de-
note the Kullback-Leibler (KL) distance between pdf f1 and f2 as
D(f1||f2) =

∫
R f1(x) log f1(x)

f2(x)
dx. We know that D(f1||f2) ≥ 0

with equality if and only if f1 = f2. The properties of the function
G(θ) are summarized in the following lemma and they can be easily
verified.

Lemma 1. Regression functions before and after change are

Gb(θ) = −D(fθo ||fθ) ≤ 0. (8)

Ga(θ) = D(fθ̄||fθ0)−D(fθ̄||fθ) = Ga(θ̄)−D(fθ̄||fθ). (9)
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Hence, it follows that, Gb(θ) reaches maximum at θ0 and
Ga(θ) reaches maximum at θ̄. The change detection algorithms
use this property to simultaneously identify the unknown param-
eter and detect the change. For subsequent use, let us denote
θmax = arg maxθ G(θ).

2.2. Existing Algorithms

We discuss two existing change detection algorithms, parallel [8]
and adaptive [9] CUSUM, for the case of unknown post-change
parameter. Parallel CUSUM algorithm proceeds as follows: For
all θ ∈ Θ1, n ≥ 1, with the initialization W θ

0 = 0, we com-
pute W θ

n = max(W θ
n−1 + Lθ(Yn), 0) and declare change when

maxθ∈Θ1 W
θ
n > A, else we continue. Here A is a fixed threshold.

In [1], asymptotic optimal properties of parallel CUSUM in mini-
mizing the worst case detection delay (with a definition slightly dif-
ferent from (5)) subject to a constraint on the average run length has
been established. With Tpc being the time at which parallel CUSUM
declares change, it easily follows that parallel CUSUM will always
raise false alarm, if run indefinitely, i.e., P∞(Tpc <∞) = 1.

Parallel CUSUM computes the CUSUM metric for all θ ∈ Θ1.
In order to reduce this complexity, an adaptive CUSUM algorithm
is proposed in [9], in which the unknown parameter is tracked adap-
tively. If Ga(·) is a strictly concave function, for any ε, we can
always find p such that Ga(p) = Ga(p + ε) and θ̄ lies in the in-
terval [p, p + ε]. Choosing a small ε, and small step size µ, the
algorithm proceeds adaptively as follows: Initialize p0 ∈ I . Iterate
as pn = pn−1 +µ[Lpn−1+ε(Yn)−Lpn−1(Yn)] and truncate/restrict
pn within I . By setting θ̂n = pn + ε

2
, we estimate the unknown pa-

rameter as θ̄n = close(θ̂n,Θ). Here, close(x,A) chooses the
element from the set A which has the smallest Euclidean distance
to the input x. With initialization W0 = 0, CUSUM metric at time
n ≥ 1 is computed as

Wn = max(Wn−1 + Lθ̄n(Yn), 0) (10)

and decision ruleR with threshold A ∈ (0,∞) is given by

R =

{
Declare change at time n if Wn > A
Continue otherwise. (11)

Adaptive CUSUM computes the LLR for only one parameter value
(θ̄n) at each time instant. In [9], it has been argued that, if G(θ) is
strictly concave and symmetric about its maximum, then E{θ̂n} →
θmax as n→∞, with suitably chosen step size µ.

3. KIEFER-WOLFOWITZ BASED CUSUM

3.1. Kiefer Wolfowitz Method

In this method, we employ stochastic approximation [10] based
Kiefer-Wolfowitz (KW) method [11] to estimate the unknown post-
change parameter. Then we perform CUSUM using the estimated
parameter, in a manner similar to adaptive CUSUM. Towards that,
we define the tuning sequences {an} and {cn} which satisfy the
following requirements:

(C1): cn → 0, as n→∞ (C2):
∞∑
n=1

an =∞ (12)

(C3):
∞∑
n=1

a2
n

c2n
<∞ (C4):

∞∑
n=1

ancn <∞ (13)

The polynomial-like sequences of the form an = n−a and cn =
n−c with suitably chosen a, c > 0 can satisfy the requirements (12)-
(13). Standard KW CUSUM method proceeds as follows:

1. Initialize the parameter estimate as θ̂0 such that θ̂0 ± c1 be-
longs to I .

2. Initialize the CUSUM metric as W0 = 0.

3. Update the parameter at each time instant as

θ̂n = θ̂n−1 + an

(
Lθ̂n−1+cn(Yn)− Lθ̂n−1−cn(Yn)

cn

)
.

(14)

4. Truncate/Restrict θ̂n such that θ̂n ± cn+1 belongs to I .

5. Round off the estimate as θ̄n = close(θ̂n,Θ)

6. At each time instant n, compute the CUSUM metric as (10)
and declare change with threshold A in the same manner as
(11).

The update equation (14) is a stochastic gradient method with 2an
being step-size parameter and the gradient of regression function

evaluated at θ̂n−1, which is G(θ̂n−1+cn)−G(θ̂n−1−cn)

2cn
, being re-

placed with its instantaneous approximation. In order to proceed
further, we make the following assumptions. We assume that vari-
ance of Lθ(Yn) is bounded for all θ, specifically,

sup
θ∈I

Var{Lθ(Yn)} <∞. (15)

Further, we assume the regularity conditions: For all θ ∈ I ,

∃K0 > 0,K1 > 0 : K0|θ − θmax| ≤ |G′(θ)| ≤ K1|θ − θmax|.
(16)

and
G′(θ)(θ − θmax) < 0,∀θ 6= θmax. (17)

Theorem 1 (Broadie et al. [12]). If the tuning sequences satisfy the
conditions (12)-(13) and the regularity conditions (15)-(17) are sat-
isfied, for the KW estimates θ̂n in (14), we have E{(θ̂n−θmax)2} →
0 as n → ∞. We also have P(|θ̂n − θmax| > ε) → 0 as n → ∞,
for any ε > 0.

In our model, θ̂n converges to θ0 in the absence of change. If
the change happens at finite ν, then θ̂n converges to θ̄. KW re-
cursion (14) in the original paper [11] used two i.i.d. samples to
compute Lθ̂n−1+cn(·) and Lθ̂n−1−cn(·), for instance Yn and Yn−1.
However, convergence has been established in [12] even if the same
sample Yn is repeatedly used, as done in (14). The mean square
convergence of KW method is stronger than the mean convergence
guarantee [9] for adaptive CUSUM. Also, unlike adaptive CUSUM,
symmetry of regression function G(·) is not required for conver-
gence of KW method.

3.2. Reset KW CUSUM

As the step tuning sequences {an} and {cn} converge to 0, when
the change happens at a large ν, it takes longer time for the KW
parameter estimates to converge to the post-change value and hence
the detection delay of standard KW CUSUM method will be corre-
spondingly large (as illustrated in Fig. 1). To overcome this limita-
tion, we consider resetting the tuning sequences an (and cn) every P
time instants as an = ak for n > P with k = mod (n−1, P )+1
and an for 1 ≤ n ≤ P can be chosen arbitrarily (cn is reset in
similar manner).
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3.3. Other Models

Reset and standard (non-reset) KW CUSUM can be applied (without
any modification) to the following variations of our original model
(1), for the case of Θ1 = {θ̄} (which corresponds to the standard
change detection problem with known pdfs) and for the case of Θ1

being a continuous set. Performance of these KW-CUSUM methods
are analyzed in the following section.

4. PERFORMANCE ANALYSIS

4.1. Gaussian Mean Change Model

For the performance analysis, we consider the following specific
model,

Yn ∼
{
N (Yn : 0, σ2) n < ν
N (Yn : M,σ2) n ≥ ν (18)

where N (Yn : θ, σ2) denotes a Gaussian pdf with variable Yn with
mean θ and variance σ2. Here M is an unknown integer with M ∈
{1, · · · ,K}. This model appears in many applications, for instance
in the physical layer fusion model in sensor networks [13] with an
unknown number of affected sensors sending symbol 1 after the
change [14]. For this model, G(θ) will be a quadratic function and
regularity conditions (15)-(17) will be satisfied. Hence standard KW
method convergence guarantee in Theorem 1 is valid. Further, for
this specific model, we present additional convergence guarantees in
the following section.

4.2. Additional Convergence Guarantees

In the Gaussian mean change model, we have Θ = {0, 1, · · · ,K}.
Also, the Kiefer-Wolfowitz (KW) method parameter update (14) be-
comes

θ̂n = θ̂n−1 +
2an
σ2

(Yn − θ̂n−1). (19)

Interestingly, the KW parameter update equation does not depend on
the sequence cn. By setting θ̂0 = 0 and choosing an = σ2

2n
, which

meets the KW convergence requirements, the parameter estimation
(19) can be re-written as

θ̂n =

∑n
k=1 Yk

n
, (20)

which is the empirical mean of the observations. Usually, we trun-
cate the KW parameter estimate to remain within the interval [0,K].
We ignore this truncation in the following asymptotic analysis. For
subsequent use, let µo(k) (and µ1(k)) denote empirical mean of k
pre-change (post-change) i.i.d. observations.

Lemma 2. For the observation model (18), when there is no change,
KW estimate in (20) converges to 0 almost surely. On the other hand,
when change happens at a finite point ν, we have θ̂n → M almost
surely, as n→∞.

Proof. Under no change, the convergence result follows from strong
law of large numbers [15]. Now, consider that the change happens at
finite ν. Now, the KW parameter estimate using N + 1 post-change

observations (at time ν + N ), is given by θ̂ν+N =
∑ν+N
k=1

Yk
ν+N

and it

can be re-written as

θ̂ν+N =

(∑ν−1
k=1 Yk

ν − 1

)
ν − 1

N + ν
+

(∑N+ν
k=ν Yk

N + 1

)
N + 1

N + ν
,

= µ0(ν − 1)
ν − 1

N + ν
+ µ1(N + 1)

N + 1

N + ν
. (21)

For fixed ν, asN →∞, we have µ0(ν−1) ν−1
N+ν

→ 0 almost surely
and µ1(N + 1)N+1

N+ν
→ M almost surely, from strong law of large

numbers.

From above lemma, in the absence of change, for every re-
alization of the observation sequence {Yn}, KW parameter esti-
mate satisfies (with probability one) close(θ̂n,Θ) = 0, ∀n ≥
N0. Here N0 may depend on the particular realization (sample
path). For that particular sample path, if non-reset KW-CUSUM
does not cross threshold by time N0, then it will not raise false
alarm subsequently. We note in our simulation results (Fig. 2) that
non-reset KW-CUSUM algorithm has smaller probability of false
alarm compared to the existing algorithms, when run over finite du-
ration. Now, we study the behavior of KW estimate (20) with re-
spect to the number of post-change observations, when the change
point ν →∞.

Lemma 3. As ν → ∞, KW estimate θ̂ν+N → 0 almost surely, if
N grows sub-linearly with ν, that is N = o(ν). On the other hand,
if N grows linearly with ν as N = βν for a constant β, we have
θ̂ν+N →M β

β+1
almost surely, as ν →∞.

Proof follows easily by applying limits to the expression in (21).
Hence, when ν is large and N is very small compared to ν, we have
close(θ̂ν+N ,Θ) = 0 and KW CUSUM metric does not increase
at time ν + N . On the other hand, if N = βν for large enough β,
we have close(θ̂ν+N ,Θ) = M , expected value of Lθ̄ν+N (Yν+N )
is positive and KW CUSUM metric tends to increase. This suggests
that the number of post change observations need to grow linearly
with ν for non-reset KW CUSUM to detect the change. The lin-
ear increase in detection delay with respect to ν is observed in our
simulations (Fig. 1).

4.3. Reset KW CUSUM Convergence

For the reset KW method where we reset an periodically (every P
time instants), conditions (12),(13) are not met and hence the param-
eter estimate will not converge in the mean square sense to the true
parameter. On the other hand, we have the following guarantee on
mean convergence.

Lemma 4. If ΠP
n=1

(
1− 2an

σ2

)
< 1, for reset KW method, we have

E{θ̂n} → θmax as n → ∞ where θmax = 0 in the absence of
change and θmax = M when change point is finite.

Proof. We prove for the case of finite ν. Taking the expecta-
tion on (19), for n ≥ 0, we have E{θ̂ν+n+1} = E{θ̂ν+n} +
2aν+n+1

σ2

(
E{Yν+n+1} − E{θ̂ν+n}

)
. Noting that E{Yν+n+1} =

M , we have M − E{θ̂ν+n+1} = M − E{θ̂ν+n} − 2aν+n+1

σ2 ×(
M − E{θ̂ν+n}

)
. Defining the error e(ν + n) = M −E{θ̂ν+n},

we have e(ν + n + 1) =
(

1− 2aν+n+1

σ2

)
e(ν + n). It fol-

lows that e(ν + n + 1) =
(

Πn+1
k=1 [1− 2aν+k

σ2 ]
)
e(ν). With
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Fig. 1. Plot of τd versus ν with a fixed threshold.

ΠP
n=1

(
1− 2an

σ2

)
, ξ, we have Πn+1

k=1

(
1− 2aν+k

σ2

)
= Cξb

n+1
P
c

where C = Π
mod (n+1,P )

l=1

(
1− 2aν+l

σ2

)
. As ξ < 1 and C is upper

bounded by a finite constant, we have Πn+1
k=1

(
1− 2aν+k

σ2

)
→ 0 as

n→∞ and hence e(ν + n+ 1)→ 0 and E{θ̂ν+n+1} →M .

5. SIMULATION RESULTS

We consider Gaussian mean change model with K = 100, σ2 = 4
and M = 2. For KW method, we use an = 1/n and reset it every
P time instants for reset KW method. Using Monte Carlo averaging
over multiple trials, by varying the thresholdA, we find the values of
Pf , τr and τd for various algorithms. The time duration of each trial
is restricted to 105 samples. In Fig. 1, we show the behavior of aver-
age detection delay τd with respect to the change point ν, for a fixed
threshold. Parallel and adaptive CUSUM do not have any signifi-
cant variation of τd with ν. In accordance with our discussions after
Lemma 3, τd of non-reset KW CUSUM linearly increases with ν.
Interestingly, τd of reset KW CUSUM (legend “Reset” specifies the
value of P ) exhibits oscillatory behavior, with the maximum delay
occurring when ν is near the middle of the resetting window.

In Fig. 2, with ν = 10, we plot τd versus Pf by varying the
threshold, where false alarm probability Pf is obtained with algo-
rithms run over a finite duration. While Pf for adaptive and paral-
lel CUSUM remains close to one, we find that Pf of standard KW
CUSUM decreases with increase in threshold. Intuitively, for large
P , resetting KW CUSUM performs close to standard KW CUSUM
and for small P , it performs close to parallel and adaptive CUSUM.
We also study the unrounded standard KW CUSUM where metric
(10) is computed with KW estimate θ̂n instead of the rounded value
θ̄n = close(θ̂n,Θ). With a large change point ν, θ̂ν−1 is typically
close to 0 and θ̂ν+k starts drifting towards M with k but rounding
θ̄ν+k = close(θ̂ν+k,Θ) may bring it back to 0 for several values
of k. Hence the unrounded standard KW CUSUM has smaller τd
compared to the (rounded) standard KW CUSUM in Fig. 1.

We plot the worst case detection delay τw defined in (5) versus
average run length τr in Fig. 3. It can be argued that the worst case
delay occurs at ν = 1 for parallel and adaptive CUSUM (similar
to Lemma 2 in [5]). For the resetting KW CUSUM, the worst-case
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delay can be computed as max1≤ν≤P τd. As the resetting window
size gets smaller, resetting KW CUSUM performs comparably to the
parallel and adaptive CUSUM.

6. CONCLUSIONS

We considered the change detection problem with unknown post
change parameter. We proposed low complexity (reset/non-reset)
KW CUSUM algorithms and studied their performance for the
Gaussian mean change model. Reset KW CUSUM performs close
to the optimal parallel CUSUM in terms of worst-case detection
delay versus average run length. Our results also show that non-
reset KW-CUSUM algorithm has smaller probability of false alarm
compared to the existing algorithms, when run over a finite duration.
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