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ABSTRACT

Graph-based methods for signal processing have shown
promise for the analysis of data exhibiting irregular struc-
ture, such as those found in social, transportation, and sensor
networks. Yet, though these systems are often dynamic, state-
of-the-art methods for graph signal processing ignore the time
dimension. To address this shortcoming, this paper considers
the statistical analysis of time-varying graph signals. We in-
troduce a novel definition of joint (time-vertex) stationarity,
which generalizes the classical definition of time stationarity
and the recent definition appropriate for graphs. This gives
rise to a scalable Wiener optimization framework for denois-
ing, semi-supervised learning, or more generally inverting
a linear operator, that is provably optimal. Experimental
results on real weather data demonstrate that taking into ac-
count graph and time dimensions jointly can yield significant
accuracy improvements in the reconstruction effort.

Index Terms— Graph signal processing, time-vertex sig-
nal processing, joint stationarity, Wiener filter

1. INTRODUCTION

Whether examining opinion dichotomy in social networks [1],
how traffic evolves in the roads of a city [2], or neuronal acti-
vation patterns in the brain [3], much of the high-dimensional
data one encounters exhibit complex non-euclidean proper-
ties. Within the field of signal processing, one of the main
research thrusts has been to extend harmonic analysis to graph
signals, i.e., signals supported on the vertices of graphs. The
key breakthrough has been the introduction of a notion of
frequency appropriate for graph signals and of the associ-
ated graph Fourier transform (GFT), leading to advances in
problems such as denoising [4] and semi-supervised learn-
ing [5, 6]. Yet, SoA graph frequency based methods often
fail to produce useful results when applied to real datasets.
One of the main reasons is that, with few recent excep-
tions [7, 8, 9, 10], they ignore time, treating successive signals
independently or performing a global average [3, 11, 12].
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In this paper we consider the statistical analysis of time-
varying graph signals. Our results are inspired by the re-
cent introduction of a joint temporal and graph Fourier trans-
form (JFT), a generalization of GFT appropriate for time-
varying graph signals [13], and the recent generalization of
stationarity for graphs [11, 14, 15]. Our main contribution is
a novel definition of time-vertex (wide-sense) stationarity, or
joint stationarity for short, that generalizes stationarity in the
time and vertex domains. We show that joint stationarity car-
ries important properties classically associated with stationar-
ity. Moreover, it leads to an optimal Wiener framework for
solving denoising and interpolating time-varying graph sig-
nals, that is composed out of two key components: a scalable
joint power spectral density estimation method, and an opti-
mization framework suitable for deconvolution under additive
error. Experiments with a real weather dataset illustrate the
superior performance of our method, demonstrating that joint
stationarity is a useful assumption in practice.

2. PRELIMINARIES

Our objective is to model the evolution of graph signals, i.e.,
signals supported on the vertices V = {v1, v2, . . . , vN} of a
undirected graph G = (V, E ,WG), with E the set of edges
and WG the weighted adjacency matrix. A more convenient
representation of G is the (combinatorial1) Laplacian matrix
LG = diag(WG1N )−WG, where 1N is the all-ones vector
of size N .We use sub/superscripts G,T, J to denote respec-
tively the graph, time, and joint domains.

Harmonic vertex analysis. In the context of graph signal
processing, the Laplacian matrix gives rise to a graph-specific
notion of frequency. The GFT of a graph signal x ∈ RN is
defined as GFT{x} = U∗Gx, where UG is the eigenvectors
matrix of LG and thus LG = UGΛGU

∗
G. The GFT allows

us to extend filtering to graphs [17, 18, 19]. Filtering a sig-
nal x with a graph filter h(LG) corresponds to element-wise
multiplication in the spectral domain

h(LG)x
∆
= GFT-1{h(ΛG) ◦ GFT{x}} = UGh(ΛG)U∗G x,

with (◦) being the element-wise multiplication (Hadamard
product). The scalar function h : R+ 7→ R, referred to as the

1Our results are applicable to any positive semi-definite matrix represen-
tation of a graph or to the recently introduced shift operator [16].
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graph frequency response, is applied to each diagonal entry of
ΛG. It is often convenient to represent the diagonal of matrix
h(ΛG) as a vector, in which case we write h = diag(h(ΛG)).
U∗G, Uᵀ

G and ŪG denote respectively the transposed complex
conjugate, the transpose and the complex conjugate of UG.
We will also use the notion of graph localization [11, 19],
a generalization of the translation operator for graphs2. The
value at the vertex vi2 of a filter with frequency response h
localized onto vertex vi1 is

T Gi1 h(i2)
∆
= h(LG) δi1(i2) =

N∑
n=1

h(λn) ūn(i1)un(i2), (1)

where δi1 is a Kronecker delta centered at vertex vi1 . We
use the notation un(i) = [UG]i,n and λn = [ΛG]n,n. For
a sufficiently regular function h, this operation localizes the
filter around vi [19, Theorem 1 and Corollary 2].

The concept of localization is linked to that of translation
in the time domain. If T Tτ h is the localization operator taken
on a cycle graph of T vertices (representing time), localiza-
tion is equivalent to translation

T Tτ h(t) = T T0 h(t− τ), t, τ = 1, . . . , T and t > τ. (2)

Above T T0 h = UTh is the inverse Fourier transform of h
and UT is the orthonormal Fourier basis such that LT =
UT ΛT U

∗
T . We also denote Ω the diagonal matrix of angular

frequencies (i.e., Ωtt = ωt = 2πt/T ). In the case of irregular
graphs, localization differs further from translation because
the shape of the localized filter adapts to the graph and varies
as a function of its topology. Additional insights about the
localization operator can be found in [11, 19, 17, 20].

Harmonic time-vertex analysis. Suppose that a graph signal
xt is sampled at T successive regular intervals of unit length.
The time-varying graph signal X = [x1,x2, . . . ,xT ] ∈
RN×T is then the matrix having graph signal xt as its t-th
column. Equivalently, X =

[
x1,x2, . . . ,xN

]ᵀ
holds N

timeseries xi ∈ RT , one for each vertex vi. Throughout this
paper, we denote as x = vec(X) the vectorized representa-
tion of the matrix X . The frequency representation of X is
given by the joint (time-vertex) Fourier transform [13]

JFT{X} = U∗GXŪT . (3)

In vector form the joint Fourier transform is JFT{x} = U∗J x,
where UJ = UT ⊗ UG is unitary, and (⊗) denotes the kro-
neker product. The inverse JFT in matrix and vector form is,
respectively, JFT-1{X} = UGXU

ᵀ
T and JFT-1{x} = UJx.

Filtering and localization can also be extended to the joint
(time-vertex) domain. A joint filter h(LJ) is a function de-
fined in the joint spectral domain h : R+× R 7→ R that is

2Stationarity is classically defined as the invariance of statistical moments
of a signal with respect to translation. This definition however cannot be
directly generalized to graphs, which do not possess regular structure and
thus lack of an isometric translation operator.

evaluated at the graph eigenvalues λG and the angular fre-
quencies ω. The output of a joint filter is

h(LJ)x
∆
= UJ h(ΛG,Ω)U∗J x, (4)

where h(ΛG,Ω) is a NT × NT diagonal matrix with
[h(ΛG,Ω)]k,k = h(λn, ωτ ) and k = N(τ − 1) + n.
Equivalently, if we define the matrix Hn,τ = h(λn, ωτ )
of dimension N × T for every λn and ωτ , we have

h(LJ)x = vec
(
JFT-1{H ◦ JFT{X})}

)
. (5)

In analogy to (1), we define the joint localization operator as

T Ji,t h
∆
= mat(h(LJ) (δt ⊗ δi)) (6)

= JFT-1{H ◦ JFT{δiδᵀt })} (7)

where mat(vec(X)) = X is the matricization operator. To
link (6) with graph localization (1) and the classical transla-
tion operator, we observe the following relations

T Ji1,t1 h(i2, t2) =

=
1

T

N,T∑
n=1
τ=1

h(λn, ωτ )ūn(i1)un(i2)e2πj
(τ−1)(t2−t1)

T

= T Ji1,0 h(i2, t2 − t1) (8)

=

N∑
n=1

[
T Tt1 Hn,·

]
(t2) ūn(i1)un(i2) (9)

=
1

T

T∑
τ=1

[
T Gi1 H·,τ

]
(i2) e2πj

(τ−1)(t2−t1)
T . (10)

From (8) and (9), it follows that joint localization consists of
first translating independently in time each line of the matrix
H and then localizing independently on the graph each col-
umn of the resulting matrix. Joint localization is thus equiva-
lent to a successive application of a graph and time localiza-
tion operator. Furthermore, based on (10), the localization in
time and graph can be performed in any order.

3. JOINT TIME-VERTEX STATIONARITY

LetX be a discrete multivariate stochastic process with finite
number of time-steps T that is indexed by vertex vi and time
t. We refer to such processes as joint time-vertex processes,
or joint processes. Let us review the established definitions of
stationarity over time and vertex domains, respectively.

Definition 1 (Time stationarity). A joint process X is Time
Wide-Sense Stationary (TWSS), if and only if, for each ver-
tex vi, the expected value is constant over the time domain
E
[
xi
]

= ci1T and there exists a function γi, for which

[Σxi ]t,· =
[
E
[
xixi

∗]− E
[
xi
]
E
[
xi
∗]]

t,·
= T Tt γi

Function γi is the autocorrelation function of signal xi in the
Fourier domain, and is also referred to as Time Power Spec-
tral Density (TPSD).
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Thus, using (7) we recover the classical definition, where
the autocorrelation function depends only on the time differ-
ence: [Σxi ]t,τ = T T0 γi(t − τ). We observe that the TPSD
is the Fourier transform of the autocorrelation, agreeing with
the Wiener-Khintchine Theorem [21]. This consideration al-
lows us to generalize the concept of stationarity to graph sig-
nals [11, 15].

Definition 2 (Vertex stationarity). A joint processX is called
Vertex Wide-Sense Stationary (VWSS), if and only if, for each
time t, the expected value is in the null space of the Laplacian
LGE [xt] = 0N and a graph filter st(LG) exists for which

[Σxt ]i,· = [E [xtx
∗
t ]− E [xt]E [x∗t ]]i,· = T Gi st .

Function st is the autocorrelation function of signal xt in the
graph Fourier domain and is also referred to as Vertex Power
Spectral Density (VPSD).

Considering that the null space of LT is the span of the
constant eigenvector 1T , the first condition is analogous to
the first one of the time stationarity definition. Moreover, the
condition for the second moment is a natural generalization
of the second condition of time stationarity where we sup-
pose invariance under the localization operator. This is in fact
equivalent to a generalization of the Wiener-Khintchine theo-
rem and implies that Σxt is jointly diagonalizable with LG.

We now unify the TWSS and GWSS in order to leverage
both the time and vertex domain statistics.

Definition 3 (Joint stationarity). A processX is called Jointly
(or time-vertex) Wide-Sense Stationary (JWSS), if and only if
the expected value is in the null space of the joint Laplacian
LJE [x] = 0NT and a joint filter h(LJ) exists, for which

[Σx]k,· = [E [xx∗]− E [x]E [x∗]]k,· = vec
(
T Ji,t h

)
,

where k = N(t − 1) + i. Function h is the autocorrelation
function of signal x in the joint Fourier domain and is re-
ferred to as time-vertex power spectral density or Joint Power
Spectral Density (JPSD).

The definition above is equivalent to stating that the mean
is constant, and the covariance matrix Σx is jointly diagonal-
izable with LJ . The latter statement is a generalization the
Wiener-Khintchine theorem and is claimed next.

Theorem 1. A processX is JWSS if and only ifLJE [x] = 0NT
and its covariance matrix is jointly diagonalizable by the joint
Fourier basis UJ .

Interestingly, assuming joint stationarity is equivalent to
assuming stationarity in both domains at the same time.

Theorem 2. If a joint process X is JWSS, then it is both
TWSS and VWSS.

Moreover, white i.i.d. noise w ∈ RNT is JWSS for any
graph. Indeed, the first moment E [w] is constant for any time
and vertex. Σw is diagonalized by the joint Fourier basis of
any graph Σw = I = UJIU

∗
J .

An other interesting property of JWSS processes is that
stationarity is preserved through a filtering operation.

Theorem 3. When a joint filter f(LJ) is applied to a
JWSS process X , the result Y remains JWSS with mean
f(0, 0)E [X] and JPSD that satisfies hY (λ, ω) = f2(λ, ω) ·
hX(λ, ω).

Theorem 3 provides a way to produce JWSS signals with
a prescribed PSD f2 by filtering white noise with the joint
filter f(LJ). In the following, we will assume for simplicity
E [x] = 0 · 1N . For the proofs of the previous theorems we
refer the reader to the extended version of this work [22].

4. JOINT PSD ESTIMATION

The basic idea behind our approach3 stems from two estab-
lished methods used to estimate the TPSD of a temporal sig-
nal, namely Bartlett’s [24] and Welch’s methods [25]. We can
see the TPSD estimation of both methods as the averaging
over time of the squared coefficients of a Short Time Fourier
Transform (STFT). For a discrete signal s of length T , the
circular discrete sampled STFT of s at the m-th (out of M )
frequency band, and under window g is

STFT{s}(k,m)
∆
=

T∑
t=1

s(t) g (tk) e−2πj
(t−1)(m−1)

M ,

where tk = mod(t− a(k − 1), T ) + 1, scalar a is the shift
in time between two successive windows [26, equation 1],
and mod(t, T ) finds the remainder after division by T i.e.,
mod(t, T ) = t − T b tT c. Note that k = 0, 1, . . . , bTa c − 1
is the time band centered at ka and that m = 1, . . . ,M is
the frequency band index. For additional insights about this
transform, we refer the reader to [27, 28].

Joint PSD estimation. We propose to use the GFT of the
STFT as a tool to estimate the joint PSD. Consider a time
window g and a time-vertex signal X . We define the coeffi-
cients’ tensor as

Cn,k,m
∆
=

N∑
i=1

[UG]i,n STFT{xi}(k,m)

An usual parameter for M is the support size of g. Then, for
half-overlapping windows, we set a to M/2. For any λn and
ωm = 2πm/M , our JPSD estimator is

h̃ (λn, ωm)
∆
=

a

T‖g‖22

bT/ac−1∑
k=0

C2
n,k,m. (11)

3To estimate the statistics of a joint process one may use the covariance
matrix. Since its size is NT × NT , in many cases this matrix is not com-
putable nor can be even stored. Moreover, the number of samples needed for
obtaining a good estimate has been shown to be O(NT log (NT )) [23].
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In order to get an estimate of h at ω 6= ωm, we interpolate
between the known points. Alternatively, with sufficient com-
putation power, one may set M = T .

5. OPTIMIZATION FRAMEWORK

We suppose that the measurements y are generated by a linear
model y = Ax+w whereA is a general linear operator. Fur-
ther, suppose that the JPSD of x is hX , whereas the noise w
is zero mean, has JPSD hW and may follow any distribution.

We propose to recover x as the solution of the Wiener
optimization problem

ẋ = arg min
x

‖Ax− y‖22 + ‖f(LJ)(x− E [x])‖22, (12)

where f(λ, ω)
∆
=
∣∣∣√hW (λ, ω)/hX(λ, ω)

∣∣∣is the response of
joint filter f(LJ) (see (4)). In the noise-less case, one alter-
natively solves the problem

ẋ = arg min
x

‖h−
1
2

X (LJ)x‖22, subject to Ax = y. (13)

Intuitively, weight f(λ, ω) heavily penalizes frequencies as-
sociated with low SNR and vice-versa. Thanks to proximal
splitting methods, we can derive an algorithm for solving
Problem (12) that requires only the application of A and
spectral graph filtering, thus scaling almost linearly (with
T × |E|). Moreover, we can show that 1) if X is a Gaussian
process, then the solution of Problem (12) coincides with a
MAP estimator, 2) if A is a linear operator, then it coincides
with the minimum mean square error linear estimator, 3) if
A = a(LJ) is a joint filter, then it is a joint Wiener filter [13].
Details can be found in the extended version [22].

6. EXPERIMENTS

Our experiment aims to show that 1) joint stationarity is a
useful model, even in datasets which may violate the strict
conditions of our definition, and 2) it can yield a significant
increase in denoising and recovery accuracy, as compared to
time- or vertex-based methods, on a real dataset. We remark
that our simulations were done using the GSPBOX [29], the
UNLocBoX [30], and the LTFAT [26].

Experimental setup. The French national meteorological
service has published in open access a dataset4 with hourly
weather observations collected in January 2014 in the region
of Brest (France). The graph is built connecting the near-
est weather stations. As sole pre-processing, we remove the
mean (over time and stations) of the temperature. The dataset,
which consisted of a total of T = 744 timesteps, was split
into two parts of size ρT and (1 − ρ)T , respectively. We use
the first part of the dataset to estimate the PSD and the sec-
ond to quantify the joint filter performance. We compare our

4Access to the raw data is possible directly from https:
//donneespubliques.meteofrance.fr/donnees_libres/
Hackathon/RADOMEH.tar.gz
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Fig. 1: The joint stationarity approach becomes especially
meaningful when the available data are very noisy or are few.
The recovery performance is slightly improved when a larger
percentage ρ of data are available for training.

method to the state-of-the-art Wiener filters for the disjoint
time/vertex domains, which are known to outperform non-
statistics based methods, such as graph/time Tikhonov and
Total Variation. To highlight the benefit of the joint approach,
in the disjoint cases we use the entire dataset to estimate the
PSD (for ρ = 1 the same data are used for both training and
testing).

Denoising. For this experiment, we add Gaussian noise to
the data and perform denoising using Wiener filter (A = I
in problem (12)). The result is displayed in Figure 1. Joint
stationarity outperforms time or vertex stationarity especially
when the noise level is high. Indeed, joint stationarity allows
the estimator to average over more samples. The effect of the
dataset size can be observed through the parameter ρ, with
larger ρ resulting in higher accuracy. Especially for large in-
put SNR, the joint approach becomes particularly meaningful
as it outperforms other approaches, even when a very small
portion of the data is used for JPSD estimation.

Recovery. We also consider a recovery problem, where a
given percentage of entries of matrix X is missing. Fig-
ure 1 depicts the recovery error obtained using problem (13).
Again, we observe a significant improvement over competing
methods. This improvement is achieved because the joint ap-
proach leverages the correlation both in the time and in the
vertex domain: each random variable in a TWSS or VWSS
process is dependent on only T − 1 or N − 1 other random
variables, respectively (rather than NT − 1 as in the joint
case), implying a higher recovery variance.
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