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ABSTRACT

In order to analyze signals defined over graphs, many concepts
from the classical signal processing theory have been extended to
the graph case. One of these concepts is the uncertainty principle,
which studies the concentration of a signal on a graph and its graph
Fourier basis (GFB). An eigenvector of a graph is the most localized
signal in the GFB by definition, whereas it may not be localized in
the vertex domain. However, if the eigenvector itself is sparse, then
it is concentrated in both domains simultaneously. In this regard,
this paper studies the necessary and sufficient conditions for the
existence of 1, 2, and 3-sparse eigenvectors of the graph Laplacian.
The provided conditions are purely algebraic and only use the ad-
jacency information of the graph. Examples of both classical and
real-world graphs with sparse eigenvectors are also presented.

Index Terms— Graph signals, sparsity, sparse eigenvectors.

1. INTRODUCTION

Analysis of signals defined over graphs has been of interest in re-
cent years. For signals defined on graphs, each node (of the graph)
is associated with data, and the graph is assumed to model the un-
derlying dependency structure between the data sources. This type
of signal structure is not limited to electrical engineering and can be
found in a variety of different contexts such as social, economic, and
biological networks, among others [1, 2].

The recent advancements in [3–5] studied the processing of sig-
nals defined over graphs. In these studies the analysis is based on
the “graph operator,” which can be selected as the adjacency matrix
as in [4], or the graph Laplacian as in [5]. There are other proposals
as well [6, 7]. By using the eigenvectors of the graph operator as
the graph Fourier basis (GFB), sampling, reconstruction and multi-
rate processing of graph signals are studied in [8–17]. Apart from
these, another important concept in signal analysis is the uncertainty
principle [18]. The studies in [19–22] extend this concept to signals
defined over graphs.

This paper considers the sparse eigenvectors of the Laplacian
of a given graph. By definition, an eigenvector (an element of the
GFB) is the most localized signal in the graph Fourier domain. On
the other hand, an eigenvector need not to be localized in the vertex
domain in general. However, if there are sparse eigenvectors, then
they are the most concentrated signals in the vertex domain and the
GFB simultaneously.

In the search for sparse eigenvectors, one approach is to numeri-
cally compute all the eigenvectors of the graph Laplacian, then look
for the sparse ones. However, this “brute-force” procedure has two
main downsides. For large graphs numerical computation of eigen-
vectors is a costly operation. More importantly, some graphs have
repeated eigenvalues. In this case, a repeated eigenvalue constitutes
an eigenspace, hence the corresponding eigenvectors are not unique.

This work was supported in parts by the ONR grant N00014-15-1-2118,
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Even if an eigenspace has a sparse eigenvector, finding sparse vec-
tors in a subspace is known to be an NP-hard problem [23–25]. The
approach taken in this paper is therefore different: we characterize
the sparse eigenvectors of a graph algebraically, using only the ad-
jacency information of the graph.

In the following, we first provide a brief review of graph signal
processing notation. In Sec. 2, we present the necessary and suffi-
cient conditions for 1- and 2-sparse eigenvectors to exist. In Sec. 3,
we consider the 3-sparse case. We also make the connection between
3-sparse and 2-sparse eigenvectors for unweighted graphs. In Sec. 4
we provide classical and real-world graph examples and show that
they have sparse eigenvectors.

1.1. Preliminaries and Notation

Let A PMN denote the adjacency matrix of a graph of sizeN (i.e.,
N nodes or vertices). We assume the graph does not have self loops,
i.e. ai,i “ 0. The weight of the edge from the jth node to the ith

node is denoted by the pi, jqth element of A. A graph is undirected
when ai,j “ aj,i for all pairs of nodes. For undirected graphs with
non-negative edge weights (ai,j ě 0), the graph Laplacian is defined
as L “D ´A, where D is the diagonal degree matrix given as
pDqi,i “

ř

j ai,j . The set of nodes that are adjacent to node i is
denoted by N piq, that is, N piq “ tj|ai,j ‰ 0u. For two sets A and
B, the set difference is defined as AzB “ tx P A|x R Bu. We use
Y to denote the set union operator. Number of elements in a set A is
denoted by |A|. We use }x}1 to denote the `1-norm of the vector x.

In this paper we always consider undirected graphs with non-
negative edge weights. Notice that Theorems 1 and 2 apply to
weighted graphs, whereas Theorem 3 and 4 are specific to un-
weighted graphs. A graph is said to be connected if there is a path
between any pair of nodes. In the following, the term “eigenvector”
always refers to eigenvectors of the graph Laplacian.

2. SPARSE EIGENVECTORS OF GRAPH LAPLACIAN

When the graph of interest is disconnected, it is straightforward to
find sparse eigenvectors. To see this, let A be the adjacency matrix
of a graph withD disconnected components. Then, under the proper
labeling of the nodes, the adjacency matrix and the Laplacian can be
written in the block diagonal form:

A“

»

—

–

A1

. . .
AK

fi

ffi

fl

, L“

»

—

–

L1

. . .
LK

fi

ffi

fl

, (1)

where Ai PMNi and Li PMNi are the adjacency matrix and the
graph Laplacian of the ith component, respectively. Due to block-
diagonal form of L, corresponding eigenvectors can be selected to be
block sparse. Therefore, for 1 ď i ď D, there exists an eigenvector
that has at mostNi non-zero elements. If there is an arbitrarily small
component, then we can find arbitrarily sparse eigenvectors of the
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Laplacian. However, this result is valid for only one direction, and
the converse is not true: if a graph has a sparse eigenvector, it does
not imply that the graph is disconnected. This will be clear from
Theorems 2 and 3, which prove that a connected graph can have a
sparse eigenvector. However, 1-sparse eigenvectors are exceptions
in this regard as stated next:

Theorem 1 (Isolated nodes of a graph). Assume that the graph of
interest is undirected and non-negatively weighted. Then, the graph
Laplacian has a 1-sparse eigenvector if and only if the graph has an
isolated node.

Proof: Assume that the graph has an isolated node. Accord-
ing to block diagonal form in (1), there exists a 1-sparse eigenvector
of the graph Laplacian.

For the converse, let v be a 1-sparse eigenvector. Without loss of
generality assume that the first index is non-zero v1 “ 1, and the rest
is zero. Therefore Lv is equivalent to the first column of L. That is,
Lv “ rd1 -aT

R,1s
T
“λr1 0T

s
T , where aR,1 P RN -1 is the vector

that denotes the adjacency of node 1, and d1 “ }aR,1}1 is the degree
of node 1. Notice that the eigenvalue equation yields aR,1 “ 0,
which means that no other node is adjacent to node 1, that is, node 1
is an isolated node.

Now we provide the characterization theorem for 2-sparse
eigenvectors of weighted graphs.

Theorem 2 (2-sparse eigenvectors of a connected graph). Let A
denote the adjacency matrix of an undirected and connected graph
with ai,j ě 0 being the weight of the edge between nodes i and j.
Then, there exist nodes i and j such that

ai,k “ aj,k @ k P t1, ¨ ¨ ¨ , Nuzti, ju, (2)
if and only if the graph Laplacian, L, has a 2-sparse eigenvector
with nonzero eigenvalue λ “ di+ai,j . The condition (2) reduces to:

N piq z tju “ N pjq z tiu, (3)
when the graph is unweighted. ♦

Proof: Assume that the graph Laplacian of a connected
graph has a two-sparse eigenvector v with nonzero eigenvalue. Due
to permutation invariance of the node labels, without loss of any
generality assume that the first two indices are nonzero, that is,
v1 ‰ 0 and v2 ‰ 0, but vi “ 0 for i ě 3.

For a connected graph, notice that the all-1 vector is the only
eigenvector of the graph Laplacian with the zero eigenvalue. Since
the graph Laplacian is a symmetric matrix the eigenspaces are or-
thogonal to each other. Therefore the 2-sparse eigenvector (with
nonzero eigenvalue) v is orthogonal to the all-1 vector, which im-
plies that v1 ` v2 “ 0. Then, we can select v1 “ -v2 “ 1 without
loss of any generality.

Let A denote the adjacency matrix of the graph. We have

A“

»

–

0 a1,2 aT
R,1

a2,1 0 aT
R,2

aR,1 aR,2 AR

fi

fl, L“

»

–

d1 -a1,2 -aT
R,1

-a2,1 d2 -aT
R,2

-aR,1 -aR,2 LR

fi

fl, (4)

where AR P MN -2 and LR P MN -2 are the partitions of the ad-
jacency matrix and the graph Laplacian, respectively. aR,1 P RN -2

is the vector that denotes the adjacency of node 1 except node 2.
ar,2 is the same for node 2. Notice that d1 “ a2,1 ` }aR,1}1 and
d2 “ a1,2 ` }aR,2}1. Now, consider the following

Lv “

»

–

d1 ` a1,2
-pa2,1 ` d2q

-aR,1 ` aR,2

fi

fl “ λv “ λ

»

–

1
-1
0

fi

fl .

Therefore we have aR,1 “ aR,2, which in particular implies that
d1 “ d2 since a1,2 “ a2,1 (graph is undirected). Furthermore
the corresponding eigenvalue is λ “ d1+a1,2. Since the graph is
connected d1 ą 0, and λ is nonzero. Notice that the condition
aR,1 “ aR,2 is the same as the condition in (2) (with i“1 and j“2).

Conversely, assume that there exist two nodes with the property
in (2). Without loss of generality, assume i “ 1 and j “ 2, and let
v be a 2-sparse vector with v1 “ -v2 “ 1. Then partition the graph
Laplacian as in (4). Due to (2), we have aR,1 “ aR,2, and d1 “ d2.
Then we have Lv “ λv with λ “ d1 ` a1,2. Therefore, v is a 2-
sparse eigenvector of L. Using the fact that d1ą 0 for a connected
graph, and the assumption that the weights are nonnegative, we con-
clude λą0.

3. SPARSE EIGENVECTORS OF UNWEIGHTED GRAPHS

In this section we provide the characterization theorem for 3-sparse
eigenvectors of unweighted graphs. We later show the connection
between 3 and 2-sparse eigenvectors of unweighted graphs.

Theorem 3 (3-sparse eigenvectors of a connected graph). Let A
denote the adjacency matrix of an undirected, unweighted, and con-
nected graph. There exist nodes i, j, and k such that

N piq z tj, ku “ N pjq z ti, ku “ N pkq z ti, ju, (5)
if and only if the graph Laplacian, L, has a 3-sparse eigenvector
with non-zero eigenvalue. ♦

Proof: Assume that the graph Laplacian of a connected
graph has a three-sparse eigenvector v with nonzero eigenvalue.
Due to permutation invariance of the node labels, without loss of
generality assume that v1 ‰ 0, v2 ‰ 0, v3 ‰ 0 but vi “ 0 for i ě 4.

For a connected graph, the all-1 vector is the only eigenvector of
the graph Laplacian with the zero eigenvalue. Since the 3-sparse
eigenvector (with nonzero eigenvalue) v is orthogonal to the all-
1 vector we have v1 ` v2 ` v3 “ 0. By scaling the eigenvector,
without loss of any generality, we can select v1 “ 1, v2 “ γ, and
v3 “ -1-γ for some γ, where γ ‰ 0 and γ ‰ -1 since the eigenvec-
tor v is exactly 3-sparse.

Similar to (4), the graph Laplacian can be partitioned as follows

L “

»

—

—

–

d1 -a1,2 -a1,3 -aT
R,1

-a2,1 d2 -a2,3 -aT
R,2

-a3,1 -a3,2 d3 -aT
R,3

-aR,1 -aR,2 -aR,3 LR

fi

ffi

ffi

fl

, (6)

where LR P MN -3 is the partition of the Laplacian, and for
1 ď i ď 3, aR,i P RN -3 is the vector that denotes the adjacency of
node i with the nodes t4, ¨ ¨ ¨ , Nu. Since v is an eigenvector, it
should satisfy the following eigenvalue equation:

Lv“

»

—

–

d1 ´ γ a1,2 ` p1+γq a1,3
´a2,1 ` γ d2 ` p1+γq a2,3
´a3,1 ´ γ a3,2 ´ p1+γq d3

´aR,1 ´ γ aR,2 ` p1+γqaR,3

fi

ffi

fl

“λv“λ

»

—

–

1
γ

-p1+γq
0

fi

ffi

fl

. (7)

This implies that aR,1 ` γ aR,2 ´ p1+γqaR,3 “ 0. This vector
equation holds true if and only if it is satisfied element-wise. That is

ar,1 ´ ar,3 “ γ par,3 ´ ar,2q @ r P t4, ¨ ¨ ¨ , Nu. (8)

Remember that the graph is assumed to be unweighted, therefore,
ar,1, ar,2, and ar,3 are either 1 or 0. Hence, (8) can appear in 23 “ 8
different variations, each of which results in a different value for γ.
The following table considers each case separately and provides the
solution(s) for γ.

ar,1 ar,2 ar,3 γ Validness
0 0 0 R X
0 0 1 -1 7

0 1 0 0 7

0 1 1 -8 7

1 0 0 8 7

1 0 1 0 7

1 1 0 -1 7

1 1 1 R X
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In the table, R means that any real number is a solution. Remem-
ber that γ ‰ 0 and γ ‰ -1 since the eigenvector v is assumed to
be exactly 3-sparse. As a result, a solution to (8) exists only if
ar,1 “ ar,2 “ ar,3. Since this is necessary for all r P t4, ¨ ¨ ¨ , Nu,
we get aR,1 “ aR,2 “ aR,3. This condition is the same as (5).

Conversely, assume that the condition (5) holds. Without loss
of generality assume that i “ 1, j “ 2, and k “ 3. Then we have
aR,1 “ aR,2 “ aR,3, where aR,i is the same as in (6). Define
s “ }aR,1}1 “ |N piqztj, ku|. Notice that s ą 0, since s “ 0 im-
plies that the first three nodes are disconnected from the rest of the
graph. Now consider the following eigenvalue equation:
»

–

a1,2`a1,3 -a1,2 -a1,3
-a1,2 a1,2`a2,3 -a2,3
-a1,3 -a2,3 a1,3`a2,3

fi

fl

»

–

1
γ

-p1+γq

fi

fl“pλ-sq

»

–

1
γ

-p1+γq

fi

fl. (9)

Notice that the matrix on the left-hand side is the Laplacian of the
subgraph on the first three nodes. Since the graph is unweighted, this
matrix can have 23 “ 8 different forms. By exhaustively considering
each case, one can show that (9) can always be solved for λ and γ
with γ ‰ 0 and γ ‰ -1. However, values of both λ and γ depend
on the matrix. Eigenvalues of a graph Laplacian are always non-
negative, therefore λ-s ě 0. As a result λ ě s ą 0.

Notice that d1 “ s` a1,2 ` a1,3, d2 “ s` a1,2 ` a2,3, and
d3 “ s` a1,3 ` a2,3. Therefore, a pair of pλ, γq that satisfies (9)
also satisfies (7). Hence, using γ solved from (9), a 3-sparse vector
v constructed as v1 “ 1, v2 “ γ, v3 “ -p1+γq, and vi “ 0 for
i ě 4 is an eigenvector of the graph Laplacian L. Furthermore, the
corresponding eigenvalue λ (computed via (9)) is nonzero.

There are two remarks regarding Theorems 2 and 3. 1) The ex-
istence of sparse eigenvectors does not depend on the size and the
global structure of the graph. Existence of nodes with the properties
in (2) or (5) directly implies the claimed results. 2) The sparse eigen-
vectors are localized on the graph. If the nodes have the properties
in (2) or (5), they must have at least one common neighbor. (This
follows from the fact that the graph is connected). Hence, non-zero
elements of the eigenvector are at most 2 hops away from each other.

Similarity between the conditions (3) and (5) encourages us to
pursue a more general condition on a (connected) graph so that an
eigenvector with an arbitrary number of non-zero elements exists. In
fact, such a generalization is possible only as a sufficient condition.
However, finding a necessary condition is not easy. The main rea-
son is that it is possible to combine sparser eigenvectors in a given
eigenspace in order to achieve less sparse ones. To see this, let K
be an arbitrary sparsity K ě 4. It can be written as K “ 2m` 3n
for some integer m and n. Hence, if there exist m 2-sparse and n 3-
sparse eigenvectors (with the same eigenvalue and disjoint supports),
a linear combination of these 2 and 3-sparse eigenvectors yields a
K-sparse eigenvector. Furthermore, m and n are not unique for a
given K in general. In short, a K-sparse eigenvector might exist for
various different reasons, which makes it difficult to find a necessary
condition for a K-sparse eigenvector to exist. In particular, consider
the Minnesota road graph (to be studied in Sec. 4.5). It has four
orthogonal 2-sparse eigenvectors with eigenvalue 1. (See Fig. 3(a)-
3(d).) Since these 2-sparse eigenvectors are in the same eigenspace,
any linear combination of these is also an eigenvector. Furthermore,
it is apparent from Fig. 3(a)-3(d) that these 2-sparse eigenvectors
have disjoint supports. As a result, one can find a 6-sparse eigenvec-
tor via a linear combination of three 2-sparse eigenvectors. However,
a 6-sparse eigenvector could have been the result of a combination
of two 3-sparse eigenvectors (with the same eigenvalue and disjoint
supports) as well. This empirically shows that a necessary condition
is not easy to obtain for an arbitrary sparsity. Also notice that one
can find 4, 6, and 8-sparse eigenvectors via linear combinations of
the 2-sparse eigenvectors of Fig. 3(a)-3(d). Unlike the 2-sparse ones,
these 4, 6, and 8-sparse eigenvectors are not localized (in terms of
number of hops) on the graph. Hence, a K-sparse eigenvector may
not be localized on the graph.

It is interesting to observe that the condition for 3-sparse eigen-
vectors is more strict than the condition for 2-sparse eigenvectors for
unweighted graphs. We formally state this result as follows.

Theorem 4 (3-sparse implies 2-sparse). If the Laplacian of an undi-
rected, unweighted and connected graph has a 3-sparse eigenvector,
then it has a 2-sparse eigenvector. ♦

Proof: Assume that the Laplacian of an undirected, un-
weighted and connected graph has a 3-sparse eigenvector. Then, due
to Theorem 3, there exist nodes i, j, k with the condition in (5). Let
S “ N piq z tj, ku “ N pjq z ti, ku “ N pkq z ti, ju. The relations
in-between the nodes i, j, k can have 4 different forms. This follows
from the fact that there are 4 non-isomorphic simple graphs on 3
nodes (page 4 of [26]). These cases are illustrated Fig. 1.

k

i

j

(a)
k

i

j

(b)
k

i

j

(c)
k

i

j

(d)

Fig. 1. All four non-isomorphic graphs on 3 nodes.

In the following table, we consider all 4 cases separately and show
that there exists a pair of nodes i, j with N piqztju “ N pjqztiu.

Case N piq N pjq N piqztju N pjqztiu
Fig. 1(a) S S S S
Fig. 1(b) S Y tj, ku S Y ti, ku S Y tku S Y tku
Fig. 1(c) S Y tju S Y tiu S S
Fig. 1(d) S Y tku S Y tku S Y tku S Y tku

As a result, due to Theorem 2, the graph Laplacian has a 2-sparse
eigenvector independent of the relation between the nodes i, j, k.

It is important to note that the result of Theorem 4 is specific to
2 and 3-sparse eigenvectors and cannot be generalized to arbitrary
sparsity. As a simple counter-example, consider the Minnesota road
graph (Sec. 4.5). It has 2-sparse and 4-sparse eigenvectors, but it
does not have a 3-sparse eigenvector.

4. EXAMPLES

In the following we will provide graph examples that satisfy, and do
not satisfy, the conditions in (2) and (5). Notice that the graphs in
Sec. 4.1-4.5 are unweighted, whereas the one in Sec. 4.6 is weighted.

4.1. Complete Graph, KN

A complete graph on N nodes has an edge between any two nodes.
Figure 2(a) provides a visual representation of K8. Let i, j and k be
three arbitrary nodes of a complete graph. Then, we have

N piqztj, ku“N pjqzti, ku“N pkqzti, ju“t1, ¨ ¨ ¨ , Nuzti, j, ku,

which shows that an unweighted complete graph of an arbitrary size
(N ě 3) has a 3-sparse eigenvector, which in particular implies that
it has a 2-sparse eigenvector as well (Theorem 4).

4.2. Complete Bi-Partite Graph, KN,M

A complete bi-partite graph of sizeN `M is a bi-partite graph (one
color having N nodes, and other color having M nodes) such that
every node of a color is connected to every node of the other color.
Figure 2(b) provides a visual representation of K4,5. Let i, j, and k
be three nodes that belong to the same color. Then we have that

N piqztj, ku“N pjqzti, ku“N pkqzti, ju“Nodes of the other color,
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which shows that an unweighted complete bi-partite graph of an ar-
bitrary size (given that a color has at least 3 nodes) has a 3-sparse
eigenvector, which in particular implies that it has a 2-sparse eigen-
vector as well.

4.3. Star Graph, SN

A star graph of size N is a complete bi-partite graph K1,N -1. In
particular, it has a center node that is connected to any other node,
and all the nodes are connected only to the center node. Figure 2(c)
provides a visual representation of S9. Assume that the center node
is labeled as 1. Let i, j and k be three nodes other than the center
node. Then we have N piq “ N pjq “ N pkq “ t1u. Therefore,

N piqztj, ku “ N pjqzti, ku “ N pkqzti, ju “ t1u,

which shows that an unweighted star graph of an arbitrary size
(N ě 3) has a 3-sparse eigenvector, which in particular implies that
it has a 2-sparse eigenvector as well (Theorem 4).

4.4. Cycle Graph, CN

A cycle graph of size N contains a single cycle through all nodes.
Figure 2(d) provides a visual representation of C8. Notice that
C2 “ K2, C3 “ K3, C4 “ K2,2, hence they have 2-sparse eigen-
vectors as shown above. For N ě 5, CN does not have a pair of
nodes that satisfy (3). Therefore, a cycle graph for N ě 5 does not
have a 2-sparse eigenvector, which, in particular, implies that it does
not have a 3-sparse eigenvector as well (Theorem 4). In fact, it can
be formally shown that an eigenvector of a cycle graph of size N
has at least N{2 non-zero values [22].

(a) (b) (c) (d)

Fig. 2. a) K8, complete graph of size 8, b) K4,5, complete bi-partite
graph of size 4-5, c) S9, star graph of size 9, d) C8, cycle graph of
size of 8.

Above examples are carefully selected to point out an important
observation: sparsity of the graph is not related to the existence of
sparse eigenvectors. This follows from the following three facts:
1) A complete graph is dense, yet it has a sparse eigenvector.
2) A cycle graph is sparse, yet it does not have a sparse eigenvector.
3) A star graph is sparse, and it has a sparse eigenvector.

4.5. Minnesota Road Graph

In this example, we consider the Minnesota road graph [8, 17]. We
use the data publicly available in [27]. This graph has 2642 nodes in
total where 2 nodes are disconnected to the rest of the graph. Since
a road graph is expected to be connected, we disregard those two
nodes. See [8, 17] for the visual representation of the graph. This is
an unweighted graph where nodes represent intersections, and edges
represent roads connecting the intersections. There are total of 3302
undirected unweighted edges.

By using a brute-force search over the graph, we have found
that the graph does not have a triplet of nodes with the property in
(5), hence the graph does not have a 3-sparse eigenvector. How-
ever, it does have 6 different pairs of nodes with the property in (3).
These pairs are visualized in Fig. 3. Hence, the graph has 2-sparse
eigenvectors. Notice that the eigenvectors generated by the nodes in
Fig. 3(a)-3(d) are orthogonal to each other and have eigenvalue 1.

Using linear combinations of 2-sparse eigenvectors, we can verify
that the graph has 4, 6, and 8-sparse eigenvectors as well.

-97.2 -97.1 -97 -96.9

48.65

48.7

48.75

48.8

48.85

48.9

48.95

49

(a)

-90.4 -90.2 -90 -89.8 -89.6

47.4

47.6

47.8

48

48.2

(b)

-96.4 -96.3 -96.2 -96.1

44.4

44.5

44.6

44.7

44.8

(c)

-95.7 -95.65 -95.6 -95.55

43.5

43.55

43.6

43.65

(d) (e) (f)

Fig. 3. Pairs of nodes in the Minnesota road graph that result in 2-
sparse eigenvectors. The pairs that satisfy the condition in (3) are
colored in blue. Notice that the pairs in (a)-(d) generate eigenvectors
with eigenvalue 1, and the pairs in (e)-(f) generate eigenvectors with
eigenvalue 2. (See Theorem 2.) Axes represent the geographical
location of the intersections.

4.6. Co-appearance Network

In this example, we consider the co-appearance network of charac-
ters in the famous novel Les Misérables by Victor Hugo [28, 29].
This is an undirected but weighted graph, where two characters are
connected if they appear in the same scene, and the weight of an
edge is the total number of co-appearances through the novel. The
graph has 77 nodes and 254 (weighted) edges in total.

In a co-appearance graph, pairs of nodes with the condition in
(2) have a meaningful interpretation. If two characters always appear
simultaneously, they will have the same number of co-appearances
with other characters, which implies the condition in (2) mathemat-
ically. As an example, consider characters “Brevet”, “Chenildieu”,
and “Cochepaille” of the novel Les Misérables. They are three wit-
nesses in Champmathieu’s trial, and appear simultaneously through
the court scenes. Nodes (of the graph) that correspond to any two
of these three characters satisfy the condition in (2), which, in turn,
implies that the graph Laplacian has a 2-sparse eigenvector.

Since the graph is weighted, we can not utilize Theorem 3 in
order to find 3-sparse eigenvectors of the Laplacian. Nevertheless,
we have experimentally observed that the nodes that correspond to
the above-mentioned three characters of the novel constitute a 3-
sparse eigenvector!

5. CONCLUSIONS

In this paper, we studied the necessary and sufficient conditions for
the existence of 1, 2, and 3-sparse eigenvectors of the Laplacian of
an undirected graph. These sparse eigenvectors are important due to
their simultaneous localization in the vertex domain and the graph
Fourier domain. The presented results for 1 and 2-sparse eigenvec-
tors are valid for weighted graphs, whereas the results on 3-sparse
case are specific to unweighted graphs. We presented examples of
both classical and real-world graphs with sparse eigenvectors. We
further showed that, for unweighted graphs, the existence of a 3-
sparse eigenvector implies the existence of a 2-sparse eigenvector.
We also provided counter-examples to show that this result does not
extend to arbitrary sparsity.
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