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ABSTRACT

Sampling is a fundamental topic in graph signal processing with
applications in estimation, clustering, and video compression. In con-
trast to traditional signal processing, however, the irregularity of the
signal domain makes the selection of the sampling points non-trivial
and hard to analyze. Indeed, although graph signal reconstruction
is well-understood in the noiseless case, performance bounds for the
interpolation of noisy samples exist mainly for randomized sampling
schemes. This paper addresses this issue by deriving a lower bound
on the mean-square interpolation error for graph signals. This bound
is universal in the sense that it is not restricted to a specific sam-
pling method and holds for all sampling sets. Simulations illustrate
the tightness of the bound, which is then used to evaluate the per-
formance of greedy sampling. Finally, a solution to the complexity
issues of kernel principal component analysis is proposed using graph
signal sampling.

Index Terms— Graph signal processing, sampling, interpola-
tion, greedy algorithms, kernel principal component analysis

1. INTRODUCTION

Graph signal processing (GSP) is an emerging field that studies sig-
nals supported on irregular domains [1, 2]. It extends traditional sig-
nal processing techniques to more intricate data structures, finding
applications in sensor networks, image processing, clustering, and
neuroscience, to name a few [3–6]. Extensions of sampling, in par-
ticular, have attracted considerable interest from the GSP commu-
nity [7–14]. This is not surprising given the fundamental role of sam-
pling in signal processing [15].

Sampling methods in GSP are broadly divided into two cate-
gories: selection sampling, in which the graph signal is observed at a
subset of nodes [13], and aggregation sampling, in which the signal is
observed at a single node for many applications of the graph shift [8].
This work focuses on the former. As in classical signal processing,
samples are only useful inasmuch as they represent the original sig-
nal. Conditions under which it is possible to recover a graph signal
from noiseless samples can be found in [10–13]. For noisy observa-
tions, however, it not possible to exactly recover the original signal
and it must therefore be approximated. Characterizing the approxi-
mation error is key, especially since selecting an optimal sampling set
is in general NP-hard [16–19].

In this work, the graph signal is modeled as random and sta-
tionary process with respect to the given graph [20–22]. Using
this model, we derive bounds on the interpolation mean-square
error (MSE) that are universal in the sense that they hold for all
sampling sets and any sampling scheme. These universal bounds are
computationally tractable and provide a practical means of bench-
marking the MSE performance of sampling techniques. Numerical

analyses for small networks show that the bounds are tight. For large
scale networks, we compare these bounds to the MSE of greedy
selection sampling, showing that they are close to each other. This
illustrates both the tightness of the bounds and how greedy selection
sampling is close to optimal.

To illustrate the practical value of the bounds we recall that the
concept of sampling is also at the core of statistical methods, such as
data subsetting and variable selection, that are crucial for big data ap-
plications [23, 24]. Kernel methods, in particular, are prone to com-
plexity issues for large data sets. For instance, performing kernel
principal component analysis (kPCA) on a data set of size n needs
n2 kernel evaluations (KEs) and extracting projections for new data
requires nKEs and Θ(nk) operations, where k is the number of prin-
cipal components (PCs) [25,26]. Solutions based on promoting spar-
sity or low-rank have been put forward [26–28]. We show here that
this problem can be cast in the context of graph signal sampling. We
then use greedy sampling to select a subset of kernels to be evaluated
for kPCA and show that this complexity reduction comes at a small
performance loss.

Notation: Lowercase boldface letters represent vectors (x), up-
percase boldface letters are matrices (X), and calligraphic letters de-
note sets (A). We write |A| for the cardinality of A. Set subscripts
refer either to the vector obtained by keeping only the elements with
indices in the set (xA) or to the submatrix whose columns have in-
dices in the set (XA). To say X is a positive semi-definite (PSD)
matrix we write X � 0, so that for X,Y ∈ Rn×n, X � Y ⇔
bTXb ≤ bTY b, for all b ∈ Rn. Finally, we take the derivative of
a function f with respect to an n × 1 vector x to yield the 1 × n
gradient vector, i.e., ∂f

∂x
= [ ∂f/∂x1 · · · ∂f/∂xn ] [29].

2. GRAPH SIGNALS

A graph-supported signal (graph signal for short) is an assignment
of values to the nodes of a graph. Formally, let G be a weighted graph
with node set V , |V| = n, and define a graph signal to be an injective
mapping σ : V → R. This signal can be represented by an n × 1
vector that captures its value at each node of the graph:

x = [ σ(v1) · · · σ(vn) ]T , vi ∈ V . (1)

As in traditional signal processing, GSP is interested in spectral
representations of (1), which depend on the graph that supports x.
Indeed, let A be a matrix representation of G. For instance, A can
be its adjacency matrix or some choice of discrete Laplacian [1, 2].
Assume that A is consistent with the vector signal (1) in the sense
that they employ the same ordering of the nodes in V . Furthermore,
assume that A is normal, i.e., there exist V orthonormal and Σ di-
agonal such that A = V ΣV T [30]. Note that if A is not normal,
spectral energy conservation properties analog to Parseval’s theorem
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in classical signal processing no longer hold. Then, the graph Fourier
transform of x is given by [1, 2]

x̄ = V Tx. (2)

A case of particular interest is when the graph signal is related
to the underlying graph in the sense that it lies in a subspace induced
by G (more specifically, by A). In this case, x̄ is K-sparse, i.e., all
elements of x̄ vanish except those with index in K, and

x = VKx̄K. (3)

These graph signals are called K-bandlimited. Note that since we
do not rely on graph frequency orderings as in [7, 12–14], we take
bandlimitedness to be synonymous to spectral-sparsity instead of the
typical “low-pass” definition.

The reason why bandlimited graphs signals are useful is similar
to traditional signal processing: these signals can be sampled and in-
terpolated without loss of information. Indeed, take sampling to be
the operation of observing the value of a graph signal on S ⊆ V , the
sampling set. Then, there exists a set S of size |K| such that exact
interpolation is feasible in the noiseless case [10–13]. In the presence
of noise, however, x can only be approximated. To do so, the next
section poses the noisy interpolation problem as a stochastic estima-
tion problem, from which the minimum MSE interpolation operator
can be derived. This allows us to provide bounds on the reconstruc-
tion error that can be used to inform the choice of the sampling set.

3. INTERPOLATION OF SAMPLED GRAPH SIGNALS

To formulate graph signal interpolation from corrupted samples as
a stochastic estimation problem, let x be a K-bandlimited random
vector, i.e., take x̄K in (3) to be a zero-mean random vector with
Λ = E x̄Kx̄

T
K = diag{λi}. Without loss of generality, assume Λ is

full-rank. Otherwise, remove fromK any element i for which λi = 0.
This class of random processes is referred to as wide-sense stationary
with respect to G in [20–22]. Also, assume that we observe a noisy
version of x:

y = x + w, (4)

where w is an n×1 zero-mean noise vector with diagonal covariance
matrix Λw = EwwT = diag{λw,i}, λw,i > 0. Note that (4) is re-
lated to the class of approximately bandlimited graph signals from [7]
and that the noiseless case is recovered for w = 0.

The signal in (4) is now sampled by observing only the elements
of y whose index are in the sampling set S. To clarify the deriva-
tions, define the selection matrix C ∈ {0, 1}|S|×n composed of the
identity matrix rows with indices in S, so that the samples of (4) can
be written as

yS = Cy. (5)

Using the samples in (5), x can be estimated as

x̂ = LyS = LCy, (6)

for some L ∈ Rn×|S|, leading to an interpolation error whose co-
variance matrix is defined as

K(x̂) = E(x− x̂)(x− x̂)T . (7)

Since L recovers (approximates) the original graph signal x from its
samples yS it is called a linear interpolation operator [7, 12, 13].

Given the above, the optimal interpolation problem becomes that
of finding x̂? = L?yS such as to minimize the covariance matrix
in (7) in the sense that K(x̂?) � K(x̂) for all x̂ as in (6). Note

that this problem is more general than the typical least-squares esti-
mation since MSE(x̂) = E ‖x− x̂‖22 = Tr [K(x̂)] and K(x̂?) �
K(x̂)⇒ MSE(x̂?) ≤ MSE(x̂) [29].

From the partial ordering of the PSD cone, L? can be obtained
by minimizing the scalar cost function J(L) = bTK(LyS)b simul-
taneously for all b [29], where we replaced x̂ by its expression (6).
Then, since x is bandlimited [see (3)] and x̄K is uncorrelated,

J(L) = bT E(x− x̂)(x− x̂)T b

= bT E(VKx̄K −LyS)(VKx̄K −LyS)T b

= bT
[
VKΛV T

K −LCVKΛV T
K − VKΛV T

K CTLT

+ LC(VKΛV T
K + Λw)CTLT

]
b. (8)

Setting the derivative of (8) with respect to bTL to zero yields

∂J(L)

∂bTL
= 0⇔ C

(
VKΛV T

K + Λw

)
CTLT b = CVKΛV T

K b,

which must hold for all b. Therefore, L? is any solution of

L?C
(
VKΛV T

K + Λw

)
CT = VKΛV T

K CT . (9)

Given a sampling set S, (6) and (9) can now be used to opti-
mally estimate a graph signal from its samples. Note that (9) also
holds in the noiseless case (Λw = 0), although its solution may not
be unique. This happens if the sampling set is not sufficient to de-
termine x, i.e., if CVK is rank-deficient [10–13]. In contrast, since
Λw � 0, the matrix on the left-hand side of (9) is always invertible
and L? is unique for all S. This is similar to the well-known regu-
larization effect of noise in Kalman filtering [29]. The interpolation
performance, however, is not the same for all sampling sets and is
examined in the sequel.

4. BOUNDS ON INTERPOLATION PERFORMANCE

For any sampling set S, using L? from (9) leads to the smallest error
covariance matrix out of all possible linear interpolators. This does
not guarantee, however, that there is no S ′, |S ′| = |S|, for which
the reconstruction error is smaller. Indeed, due to the irregularity
of the domain of graph signals, selecting the “best” sampling set is a
combinatorial problem that is NP-hard in general [16–19]. Therefore,
finding bounds on the interpolation performance that hold for all S
can inform the sampling set selection by (i) describing how different
factors influence the reconstruction performance and (ii) gauging the
quality of given sampling sets.

To bound the performance of the optimal interpolation opera-
tor (9), we start by determining its error covariance matrix K(x̂?).
Substituting any L? satisfying (9) into (7) gives

K(x̂?) = VK
(
Λ−1 + V T

K CTCΛ−1
w CTCVK

)−1

V T
K , (10)

where we used the matrix inversion lemma [30] and the fact that Λw

is diagonal so that (CΛwC
T )−1 = CΛ−1

w CT . Using (10), we get

MSE(x̂?) = Tr [K(x̂?)] = Tr
(
K̄
)

, (11)

where K̄ =
(
Λ−1 + V T

K CTCΛ−1
w CTCVK

)−1
. Finally, to sim-

plify the derivations, we assume that both signal and noise are ho-
moscedastic, i.e., Λ = σ2I and Λw = σ2

wI . Under these conditions,
the following holds.
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Proposition 1. Let x = VKx̄K be a bandlimited stationary graph
signal, y = x + w be its noisy observations, and x̂? = L?yS
be its minimum MSE estimate based on a sampling set S. Assum-
ing E x̄Kx̄

T
K = σ2I and EwwT = σ2

wI , the reconstruction error
MSE(x̂?) = E ‖x− x̂?‖2 is bounded by

|K|2

|K|σ−2 + σ−2
w

¯̀|S|
≤ MSE(x̂?) ≤ |K|σ2, (12)

where ¯̀
m is the sum of the m largest leverage scores, i.e., ¯̀

m =
maxX :|X|=m

∑
j∈X ‖vj‖2 with vT

j the j-th row of VK.

Proof. Start with the upper bound that is achieved for an empty sam-
pling set, i.e., for S = {} ⇒ C = 0. Since V T

K CTCΛ−1
w CTCVK �

0 and that matrix inversion is operator antitone [31], one gets K̄(x̂?) �
Λ, from which the upper bound in (12) follows.

The lower bound is obtained by using the fact that the trace is the
sum of the eigenvalues and the arithmetic/harmonic means inequality.
Indeed, for any n× n positive definite matrix X , it holds that [30]:

Tr (X) ≥ n2

Tr (X−1)
,

with equality if and only if X = γI , γ > 0. Applying this bound
to (11) yields

MSE(x̂?) ≥ |K|2

Tr
(
Λ−1 + V T

K CTCΛ−1
w CTCVK

)
≥ |K|2

|K|σ−2 + σ−2
w

¯̀|S|
. �

The bound in (12) was derived by taking the graph signal to be
stochastic, so that the expectation is taken over realizations of the
signal and the bound holds for all sampling sets S ⊆ V . It is worth
noting that (12) depends only on statistics of the graph signal, struc-
tural properties of the underlying graph, and the sampling set size. As
expected, (12) decreases with the sampling set size. The rate of de-
cay, however, depends on the value of the leverage scores ‖vi‖2. In a
sequential sampling scheme, their value can therefore be used to in-
form whether it is worth acquiring a new sample. A rate bound can be
obtained using the fact that ¯̀|K| ≤ |K|`max for `max = maxj ‖vj‖2.
Then, if the sample set is chosen so as to uniquely determine the
graph signal [10–13], i.e., |S| ≥ |K|, (12) reduces to

MSE(x̂?) ≥ |K|
σ−2 + σ−2

w `max
. (13)

It is clear from (13) that the reconstruction error increases linearly
with the bandwidth of the graph signal, which is a fundamental lim-
itation for large dimensional signals. It therefore shows the impor-
tance of working with low bandwidth signals and, consequently, of
appropriately identifying the signal’s underlying graph.

Although these observations give insights into graph signal inter-
polation, one of the main motivation behind Proposition 1 was ad-
dressing the issue of sampling set selection. Towards this end, we
propose the following corollary:

Corollary 1. For any graph signal and its interpolation as in Propo-
sition 1, any sampling set S for which MSE(x̂?) = η satisfies

¯̀|S| ≥
|K|2 − η|K|σ−2

ησ−2
w

. (14)

Given that ¯̀|S| ≤ |S|`max, it also holds that

|S| ≥ |K|
2 − η|K|σ−2

η`maxσ
−2
w

. (15)
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Fig. 1. Comparison between (12) and (14) (dashed lines) and optimal
values (solid lines) for three random graphs (n = 20)

Corollary 1 allows us to lower bound the number of samples
needed to achieve a desired MSE. From (15), note that the num-
ber of samples is inversely proportional to the MSE. Moreover, al-
though (15) suggest that the sample set size required to achieve a cer-
tain MSE grows with O(|K|2), it is not necessarily the case. Indeed,
recall that `max is a function of |K| and in fact monotonically increases
to 1 as |K| → n. Still, as in the noiseless case, the signal bandwidth
is a dominating factor in the determination of the minimum sampling
set size.

Although (15) characterizes the overall behavior of the sampling
set size, it is not informative in practice because it largely underesti-
mates |S|. On the other hand, (14) yields a tighter bound which can
be used, together with (12), to evaluate a sampling set or sampling
technique. Indeed, Fig. 1 compares (12) and (14) to the minimum in-
terpolation MSE and optimal set size, found by exhaustive search, for
three graph models: Erdös-Rényi [32], preferential attachment [33],
and a random undirected graph with weights uniformly distributed
in [0, 1]. Note that the bounds are too conservative for |S| < |K|, but
become tighter as |S| increases. This is because the inequality used
to derive (12) becomes tighter as the eigenvalues of K(x̂) become
more similar.

Remark 1. Bounds on the MSE performance of graph sampling
have also been derived in [7, 13]. These papers consider randomized
sampling schemes, including uniform and leverage score sampling,
and derive bounds on the optimal sampling distributions and inter-
polation error. The bounds in Proposition 1 and Corollary 1 differ
from the bounds in [7, 13] in that in the latter the spectrum of the
graph signal is deterministic and the sampling is random. Thus, these
bounds hold in expectation over different sampling realizations for a
specific randomized strategy. The bounds in (12) hold in expectation
over realizations of the signal and apply to any sampling strategy.

4.1. Greedy MSE sampling

Greedy sampling remains ubiquitous in GSP and has proven success-
ful in many applications [10–13, 34]. This is not surprising given
the attractive features of greedy algorithms for large-scale problems.
First, their complexity is polynomial. Also, since they build the solu-
tion sequentially, they can be interrupted at any time if, for instance, a
desired performance level is reached. Finally, near-optimality results
exist for the minimization of supermodular functions. This is indeed
why greedy algorithms are often used in sensor selection, experimen-
tal design, and machine learning [16–19].

No performance analysis, however, is available to justify their
success in GSP. In fact, the MSE in (11) is not a supermodular set
function, which would provide a near-optimal guarantee for greedy
search [35]. This can be seen from [18, Thm. 2.4] and the fact that
f(t) = t−2 is not operator antitone. Therefore, although greedily
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Fig. 2. Comparison between greedy MSE sampling (solid lines)
and (12) and (14) (dashed lines) for random graphs (n = 1000)

minimizing the MSE appears to work in practice, there has yet to be
a theoretical justification for it.

The bounds in Section 4 cannot be used to show optimality re-
sults for greedy sampling in general. Nevertheless, they can certify
specific instances by comparing the obtained MSE or sampling set
size to (12) and (14). Fig. 2 displays these results for the same three
random graph models as Fig. 1. Fig. 2b, in particular, shows that the
greedy sampling set size is within 10% of the lower bound. Even
though these are not evidence for the optimality of greedy sampling,
they allow us to gauge the quality of the sampling sets obtained using
this scheme.

5. KERNEL PCA AND GSP

Kernel PCA is a nonlinear version of PCA [25] that identifies a data
subspace by truncating the eigenvalue decomposition (EVD) of a
Gram matrix constructed from a training dataset. Indeed, whereas
PCA uses the empirical covariance matrix, kPCA evaluates inner
products in a higher dimensional space F known as the feature space.
Since the map ϕ between Rm and F can be nonlinear and F can
have large or even infinite dimensionality, kPCA results in richer sub-
spaces than linear PCA [25, 26, 36].

Naturally, constructing the Gram matrix by taking inner products
in F can be challenging due to its dimensionality. This problem is ad-
dressed using the so called kernel trick [25,26,36]. A kernel is a func-
tion κ : Rm × Rm → R that evaluates an inner product in F directly
from vectors in Rm, i.e., κ(r, s) = 〈ϕ(r), ϕ(s)〉F. Then, given the
training set {ui}i=1,...,n, ui ∈ Rm, the n× n kernel (Gram) matrix
and its EVD is calculated as

Φ = [κ(ui,uj)]i,j=1,...,n = V ΛV T . (16)

Using the representer’s theorem, a new data vector z can be projected
onto the first k eigenvectors of Φ using K = 1, . . . , k in

z̄ = V T
K z̃, z̃ = [κ(ui,z)]i=1,...,n . (17)

The projection in (17) takes Θ(kn) operations and n KEs, which
makes this method impractical for large data sets even if the sub-
space of interest is small. In [27], this issue was addressed by using
a Gaussian generative model for Φ and showing that its maximum
likelihood estimate depends only on a subset of the ui. Another ap-
proach is to impose sparsity on V a priori so that it depends only on a
reduced number of training points [26]. Alternatively, one can find a
representative subset of the training data and apply kPCA to that sub-
set [28]. The issue with this last method is that finding a good data
subset is known to be a hard problem [23,24]. In fact, it is equivalent
to the problem of sampling set selection in GSP.

Indeed, since we used the same notation as Section 2, it is
straightforward to see that (17) has the form of the graph Fourier
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Fig. 3. Performance of kPCA for different sampling set sizes

transform in (2) when A = Φ. Certainly, kPCA can be seen as
forcing the graph signal z̃ to be bandlimited on the graph represented
by Φ. Using the observations from Section 4.1, we then can find
a data subset by sampling the training data greedily. This method
is illustrated in a face recognition application based on the AT&T
face data set [37]. First, we apply kPCA with a polynomial kernel
of degree d = 2 [36] and retain k = 25 PCs. Then, we fit a one-
against-one multiclass support vector machine (SVM) to the retained
PCs (see [38] for details on this scheme).

It is worth noting that in this application we are no longer inter-
ested in z̃ directly, i.e., the graph signal x from (4), but in the out-
put of the SVM classifier. Indeed, our performance measure is now
the classification error as opposed to the interpolation MSE. Explic-
itly, we wish to minimize the reconstruction MSE of the classification
vector

c = HSVMz̄ = HSVMV
T
K z̃, (18)

where HSVM is the n(n − 1)/2 × k matrix that collects the SVM
classifiers and z̄ is the projection of z̃ onto the PCs [see (17)]. To do
so, we replace x̂ in (7) by HSVMV

T
K x̂, so that (10) becomes

K′ = HSVM

(
Λ−1 + V T

K CTCΛ−1
w CTCVK

)−1

HT
SVM.

We can now sample to minimize Tr [K′(x̂?)], the error in recon-
structing c.

Note that K′ stems from a more general problem than the one
used to derive Proposition 1. Finding a bound for this case is left
for future works. Moreover, given that the images used to esti-
mate K (train the kPCA) and those used as “graph signals” in (17)
come from the same data set, there is no actual observation noise.
Still, σ2

w can be used to regularize the inversions in (9) and (10),
e.g., by choosing σ2

w = 10−3 [29]. Fig. 3 shows the results of this
procedure. Note from Fig. 3b that for |S| = 40 we obtain the same
result as implementing the kPCA projection without sampling (direct
projection), but using only Θ(k|S|) operations and |S| KEs, yielding
an 8-fold reduction in complexity.

6. CONCLUSION

This work addressed the issue of sampling set selection in GSP by
bounding the interpolation error of graph signals. First, the optimal
linear interpolator was derived for noisy samples. Then, this result
was used to obtain a bound on the MSE that holds for any sampling
strategy. Simulations illustrated the tightness of this bound, which
was used to assess the quality of greedy MSE sampling. Finally, data
subsetting for kernel PCA was formulated as a graph signal sampling
problem giving a considerable reduction in complexity at a negligible
performance cost.
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