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ABSTRACT

A key tool to analyze signals defined over a graph is the

so called Graph Fourier Transform (GFT). Alternative def-

initions of GFT have been proposed, based on the eigen-

decomposition of either the graph Laplacian or adjacency

matrix. In this paper, we introduce an alternative approach,

valid for the general case of directed graphs, that builds the

graph Fourier basis as the set of orthonormal vectors that

minimize a well-defined continuous extension of the graph

cut size, known as Lovász extension. To cope with the non-

convexity of the problem, we exploit a recently developed

method devised for handling orthogonality constraints, with

provable convergence properties.

Index Terms— Graph signal processing, graph Fourier

transform, total variation, clustering.

1. INTRODUCTION

Signal processing on graphs has attracted a lot of interest in

the last years because of its many potential applications, from

social and economic networks, to smart grids, gene regulatory

networks, and so on. Graph signal processing (GSP) repre-

sents a promising tool for the representation, processing and

analysis of signals defined over the vertices of a (weighted)

graph [1–5]. A central role in GSP is the spectral analysis of

graph signals, which is based on the so called Graph Fourier

Transform (GFT). Alternative definitions of GFT have been

proposed: a) one approach, valid for undirected graphs, based

on the projection onto the eigenvectors of the graph Lapla-

cian, which represent the optimal basis minimizing the l2
norm graph total variation, see, e.g. [6], [3], [7]; b) an al-

ternative approach, proposed in [1], [2] for the more general

case of directed graphs, built on the Jordan decomposition of

the adjacency matrix. This second method is rooted on the

association of the graph adjacency matrix with the signal shift

operator, which lies at the basis of all shift-invariant linear

filtering methods for graph signals [8], [9]. In this paper,

we propose an alternative approach valid for directed graphs,
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which, differently from [1], [2], builds a Fourier basis that is

unitary and guarantees zero total variation for constant graph

signals. We assume as optimization criterion the minimiza-

tion of the cut size, as a general way to capture clustering

properties of graph signals over both undirected and directed

graphs. Since the min-cut problem is a combinatorial prob-

lem, we exploit the submodularity property of the cut size

to derive a convex relaxation of this set function, known as

its Lovász extension [10], [11], whose minimization pre-

serves the optimality of the original combinatorial problem.

Interestingly, in the undirected graph case, the Lovász ex-

tension of the cut size reduces to the widely used ℓ1 norm

total variation of a graph signal, whereas for directed graph

it provides an alternative measure of graph signal variation,

which captures the edge directivity. We build the GFT basis

as the set of orthonormal vectors that minimize the Lovász

extension of the cut size. Since the resulting problem is

non-convex, we exploit a recently developed efficient method

to handle non-convex orthogonality constraints, namely the

proximal alternating minimized augmented Lagrangian (PA-

MAL) method [12], which is an iterative method with prov-

able convergence property guaranteeing that any limit point

is a Karush-Kuhn Tucker point of the original non-convex

problem [12].

2. MIN-CUT SIZE AND GRAPH FOURIER BASIS

We consider a graph G = {V , E} consisting of a set of N
vertices (or nodes) V = {1, . . . , N} along with a set of edges

E = {aij}i,j∈V , such that aij > 0 if there is a direct link from

node j to node i or aij = 0, otherwise. We denote with |V| the

cardinality of V , i.e. the number of elements of V . A signal

s on a graph G is defined as a mapping from the vertex set to

a real vector of size N = |V|, i.e. s : V → R. Let A denote

the N × N adjacency matrix with entries the edge weights

aij for i, j = 1, . . . , N . The (unnormalized) graph Laplacian

is defined as L := D − A, where the in-degree matrix D is

a diagonal matrix whose ith diagonal entry is di =
∑

j aij .

One of the basic operations over graphs is clustering, i.e. the

partition of the graph onto disjoint subgraphs, such that the

vertices within each subgraph (cluster) are highly intercon-

nected, whereas there are only a few links between different
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clusters. Finding a good partition can be formulated as the

minimization of the cut size [13]. Consider a subset of ver-

tices S ⊂ V and its complement in V , S̄. The edge boundary

of S is defined as the set of edges with one end in S and the

other end in its complement S̄. The cut set size between S
and S̄ is defined as the sum of the weights over the boundary,

i.e. [13]
cut(S, S̄) :=

∑

i∈S,j∈S̄

aji. (1)

Computing the optimal partition that minimizes the cut size is

an NP-hard problem. To overcome this difficulty, we use the

property that the cut size is a submodular function [11] and

that the Lovász extension [10] of a submodular function is a

convex function [11]. More specifically, given the set V and

its power set 2V , i.e. the set of all its subsets, let us consider

a real-valued set function F : 2V → R. The cut size in (1)

is an example of set function, with F (S) := cut(S, S̄). The

Lovász extension of the graph functionF [10], [11] allows the

extension of a set-function defined on the vertices of a graph

to the real space RN according to the following definition.

Definition 1 Let F : 2V → R be a set function with F (∅) =
0. Let x ∈ R

N be ordered w.l.o.g. in increasing sense, so that

x1 ≤ x2 ≤ . . . ≤ xN , and define Ci = {j ∈ V : xj > xi},

where C0 = V . Then the Lovász extension f : RN → R of F
is given by:

f(x)=

N
∑

i=1

xi(F (Ci−1)− F (Ci))=

N−1
∑

i=1

F (Ci)(xi+1 − xi)

+ x1F (V).
A particular interesting class of set functions are the submod-

ular set functions, whose definition is recalled here below.

Definition 2 A set function F : 2V → R is submodular if

and only if, ∀A,B ⊆ V , it satisfies the following inequality

F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B).
A fundamental property of a set function F is that its Lovász

extension is convex if and only if F is submodular [ cf. [11],

p. 23]. In particular, the cut function is known for being

submodular (see, e.g., [11], [14]) and its Lovász extension, in

the general case of directed graphs, is

f(x) =

N
∑

i,j=1

aji[xi − xj ]+ := DV(x) (2)

with [y]+ := max{y, 0}. For undirected graphs, (2) boils

down to the widely used ℓ1 norm total variation of a graph

signal [15], [16]:

f(x) =

N
∑

i,j=1,i>j

aji|xi − xj | := TV1(x). (3)

Alternative definitions of GFT have been proposed in the lit-

erature. In case of undirected graphs, the GFT of a vector s

was defined as [3]

ŝ = UT
s (4)

where the columns of matrix U are the eigenvectors of the

Laplacian matrix L, i.e. L = UΛUT . This definition is

basically rooted on the clustering properties of these eigen-

vectors [17]. In fact, by definition of eigenvector, the Fourier

basis used in (4) can be thought as the solution of the follow-

ing sequence of optimization problems for k = 2, . . . , N

uk =argmin
uk∈RN

u
T
kLuk := argmin

uk∈RN

TV2(uk)

s.t. u
T
k uℓ = δkℓ, ℓ = 1, . . . , k

(5)

where δkℓ is the Kronecker symbol and we used the property

that the quadratic form built on the Laplacian is the ℓ2-norm

total variation, i.e. TV2(x) :=
∑N

i,j=1,i>j aji(xi − xj)
2.

Since the first eigenvector of L is the constant vector, we as-

sume in (5) u1 = b 1, with b = 1/
√
N . In all applications

where graph signals exhibit a cluster behavior, meaning that

the signal is relatively smooth within each cluster, whereas it

can vary arbitrarily from cluster to cluster, the GFT defined as

in (4) helps emphasizing the presence of clusters [17].

Alternatively, for directed graphs, the GFT was defined

in [2] as

ŝ = V−1
s (6)

where V comes from the Jordan decomposition of the asym-

metric adjacency matrix A, i.e. A = VJV−1. To estimate

variations of the graph Fourier basis, the total variation of a

vector was defined in [2] as

TVA(s) = ‖s−Anorm s‖1 (7)

where Anorm := A/|λmax(A)|. Although giving rise to the

elegant theory of algebraic signal processing over graphs [1],

[2], [8], the definition of GFT as in (6) raises some important

issues: i) in general, the transformation matrix V is not uni-

tary; ii) the definition of total variation in (7) may give rise

to a nonzero total variation for a constant graph signal; iii)

the computation of the Jordan decomposition incurs into seri-

ous and intractable numerical instabilities even for moderate

graph sizes [18].

To cope with these issues, we define the Fourier basis as the

set of N orthonormal basis vectors xi, i = 1, . . . , N , that

minimizes the total variation defined in (2), since it repre-

sents the continuous convex Lovász extension of the graph

cut size. The first vector is set equal to the constant vector,

i.e. x1 = b 1, as this (unit-norm) vector yields a total vari-

ation equal to zero. Then, the matrix X := (x1, . . . ,xN )
containing all the basis vectors, is found as the solution of the

following optimization problem

min
X∈RN×N

DV(X) :=

N
∑

k=1

DV(xk) (P)

s.t. XTX = I, x1 = b1

where DV(xk) =
∑N

i,j=1
aji [xk(i)− xk(j)]+. The nonlin-

ear constraints are used to get an orthonormal basis and to

prevent the all-zeros solution. Unfortunately, they make P a

a non-convex problem.
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3. DIRECTED VARIATION MINIMIZATION

To tackle the non-convex orthogonality constraint in P , in

this section we proposed the PAMAL algorithm, developed

in [12], which solves the orthogonality constrained problem

by iteratively updating the primal variables and the multipli-

ers estimates. If we introduce an auxiliary variable P = X to

split the orthogonality constraint, problem P becomes

min
X,P∈RN×N

DV(X)

s.t. X = P,x1 = b1, PTP = I

(8)

which is equivalent to the following one

min
X,P∈RN×N

f(X,P) , DV(X) + δS1
(x1) + δSt

(P) (Pe)

s.t. H(X,P) , P−X = 0,

where δS(X) denotes the indicator function of set S, i.e.

δS(X) =

{

0, if X ∈ S
+∞, otherwise

(9)

and the set S1 in Pe is defined as S1 , {x ∈ R
N : ‖x‖2F =

1,x ∈ span{1}}, whereas St , {P ∈ R
N×N : PTP = I}

denotes the Stiefel manifold. The basic idea proposed in [12]

to solve Pe is to combine the augmented Lagrangian method

[19], [20] and the alternating proximal minimization algo-

rithm, known as the PAM method [21], which deals with

non-smooth, non-convex optimization problems. Following

the augmented Lagrangian method, we add a penalty term to

the objective function so as to assign a high cost to infeasi-

ble points. The augmented Lagrangian function associated to

problem Pe is then

L(X,P,Λ) = f(X,P) + 〈Λ,H(X,P)〉+ ρ

2
‖H(X,P)‖2F

where ρ is a positive penalty coefficient, Λ ∈ R
N×N rep-

resents the multipliers matrix, while the inner matrix prod-

uct is defined as 〈A,B〉 , tr(ATB). The proposed method

reduces problem Pe to a sequence of problems that, as de-

scribed in Algorithm 1, alternately update, at each iteration k,

the following three steps:

1. Compute the critical point (Xk,Pk) of the function

L(X,P,Λk; ρk) by solving

(Xk,Pk) , min
X,P∈RN×N

L(X,P,Λk; ρk); (10)

2. Update the multiplier estimates Λk;

3. Update the penalty parameter ρk.

The stationary solution (Xk,Pk) of problem (10) is found

through an approximate algorithm, i.e. an algorithm tolerat-

ing a prescribed error value ǫk, so that

‖ ∂L(Xk,Pk,Λk; ρk) ‖∞≤ ǫk (11)

or, equivalently, by finding a subgradient point Θk ∈ ∂L
satisfying (11) with Pk ∈ St. To find such a point, we

adopt a coordinate-descent method with proximal regulariza-

tion based on the PAM method proposed in [22]. More specif-

ically, at the k-th outer iteration of the algorithm, we com-

pute (Xk,Pk) by iteratively solving, at each inner iteration n,

the following proximal regularization of a two blocks Gauss-

Seidel method:

Xk,n = argmin
X∈RN×N ,x1=b1

L(X,Pk,n−1,Λk; ρk)+

ck,n−1

1

2
‖ X−Xk,n−1 ‖2F (P̃k,n)

Pk,n = argmin
P∈RN×N

L(Xk,n−1,P,Λk; ρk)+

ck,n−1

2

2
‖ P−Pk,n−1 ‖2F (Q̃k,n)

where the proximal parameters ck,ni can be arbitrarily chosen

as long as they satisfy

0 < c ≤ ck,ni ≤ c̄ < ∞, k, n ∈ N, i = 1, 2, c > 0, c̄ > 0.

The first convex problem P̃k,n can be solved through any con-

vex optimization numerical tool, whereas the second problem

in Q̃k,n admits a closed-form solution as stated in the follow-

ing proposition (for the proof see Appendix A in [23]).

Proposition 1 Define the matrix F , (ck,n−1

2 Pk,n−1 +

ρkXk,n − Λk)(ρk + ck,n−1

2 )−1 with SVD decomposition

F = QΣTT where Q,T ∈ R
N×N are unitary matrices,

while Σ is a diagonal matrix with entries the singular values

of F. The optimal solution of the non-convex problem Q̃k,n

is given by Pk,n = QTT .

Algorithm 2 describes the method to solve problems P̃k,n,

Q̃k,n in step 1 of Algorithm 1. The inner iterations terminate

when there exists a subgradient pointΘk,n ∈ ∂L(Xk,n,Pk,n,
Λk; ρk) satisfying ‖ Θk,n ‖∞≤ ǫk, Pk,n ∈ St, where

Θk,n
, (Θk,n

1 ,Θk,n
2 ) with the subgradients given by

Θ
k,n
1

= ck,n−1

1
(Xk,n−1 −Xk,n) + ρk(Pk,n−1 −Pk,n)

Θ
k,n
2 = ck,n−1

2 (Pk,n−1 −Pk,n).

For updating the multipliers matrix in step 2 of Algorithm

1, we adopt the classical first-order approximation by impos-

ing that the estimates of multipliers must be bounded. For the

setting of the remaining parameters of the proposed algorithm

we will assume that: i) the sequence of positive tolerance pa-

rameters {ǫk}k∈N is chosen such that limk→∞ ǫk = 0; ii) the

penalty parameter ρk is updated according to the infeasibility

degree by following the rule described in step 3 of Algorithm

1 [12], [20]. For the convergence proof of Algorithm 2 to a

stationary solution of problem Pe, see [23].

We present now some numerical results to assess the ef-

fectiveness of the proposed strategy to find a GFT basis. The
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Algorithm 1 :PAMAL method

Given the parameters {ǫk}k∈N, 0 < ǫk < 1, τ ∈ [0, 1), γ > 1,

k = 1, ρk > 0, Λk ∈ R
N×N , Λmin ≤ Λk ≤ Λmax with −∞ <

[Λmin]i,j ≤ [Λmax]i,j < ∞, ∀i, j
Repeat

Step.1 Compute (Xk,Pk) as in Algorithm 2 such that there exists

Θk ∈ ∂L(Xk,Pk,Λk; ρk) with ‖ Θk ‖∞≤ ǫk, (Pk)TPk = I

Step.2 Update the multiplier estimates

Λk+1 = [Λk + ρk(Pk −Xk)]T
where [·]T is the projection on T , {Λ :Λmin≤Λ ≤ Λmax}
Step.3 Set Rk = Pk −Xk , and update the penalty parameter

ρk+1 =

{

ρk if ‖ Rk ‖∞≤ τ ‖ Rk−1 ‖∞
γρk otherwise

k = k + 1
until convergence

Algorithm 2 :PAM method for solving step 1 in Algorithm 1

Let (X1,0,P1,0) any finite initialization. For k ≥ 2, set

(Xk,0,Pk,0) = (Xk−1,Pk−1), n = 0.

Repeat

Step.1 Set n = n+ 1. Compute Xk,n by solving problem P̃k,n

Step.2 Pk,n = QTT where Q,T come from the following SVD

decomposition

QΣTT =
c
k,n−1

2
Pk,n−1

+ρkXk,n
−Λk

ρk+c
k,n−1

2

Step.3 Set (Xk,Pk) = (Xk,n,Pk,n), Θk = Θk,n

until ‖ Θk,n ‖∞≤ ǫk

parameters of the PAMAL method are set as τ = 0.5, γ =
1.5, ρ1 = 50, ǫk = (0.9)k, ∀k ∈ N, Λmin = −1000 · I
Λmax = 1000 · I, Λ1 = 0, c = ck,ni = c̄ = 0.5, ∀i, k, n.

As a first example, we consider a directed graph composed

of N = 15 nodes. In Figure 1, we plot the basis vectors

{xk}15k=1
, obtained by running Algorithm 1 (the dashed lines

correspond to directed edges). The intensity of the vector en-

tries is encoded in the color associated to each vertex and the

basis vectors are ordered according to increasing values of

the directed variation DV(xk). We can notice how the basis

favors the appearance of clusters. Furthermore, the basis vec-

tors assume an exactly constant value within each cluster, in

contrast with the Laplacian method where the eigenvectors of

L are only slowly varying within the clusters, but not exactly

constant. We also compare our method to the two basic def-

initions of GFT proposed in [3], [2]. As a graph model, we

assume scale-free graphs with N = 20 nodes. To make the

comparison possible, since the Laplacian-based method of [3]

assumes undirected graphs, and also to avoid complex vectors

for which the directed total variation DV does not represent a

valid metric, we focus on undirected scale-free graphs, where

the total variation is as in (3). In Fig. 2 we plot the average

total variations versus the average minimum degree, for the

following three cases: a) TV1(X
∗) derived by solving prob-

lem P using the PAMAL method; b) TV1(V) where V are

the eigenvectors of the adjacency matrix according to the GFT
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Fig. 1: Optimal basis vector for Algorithm 1.
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Fig. 2: Averaged total variation versus the average minimum

degree according to alternative GFT definitions.

defined in (6); c) TV1(U) where U are the eigenvectors of the

Laplacian matrix by assuming the GFT as in (4). As we can

notice from Fig. 2, our GFT basis leads to a substantial perfor-

mance improvement in terms of total variation minimization.

This is due to the capability of the proposed approach to fa-

vor exactly constant values within each cluster. In summary,

the proposed method, although maybe loosing the elegance

of [1], yields a GFT basis which is unitary by construction,

it is numerically robust and it helps to identify clusters, an

operation implicit in many applications of GSP.
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