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ABSTRACT

Current formulations of critically-sampled graph wavelet filterbanks
work only for bipartite graphs where downsampling signals on ei-
ther partition leads to a spectrum folding phenomenon. The lack of
such a natural downsampling scheme for arbitrary graphs poses dif-
ficulties in designing filterbanks. In this paper, we propose a critical
sampling scheme on an arbitrary graph that chooses a sampling set
for each channel, given a set of analysis/synthesis filters, by seeking
to minimize a bound on the overall reconstruction error associated
with the filterbank. Our algorithm is efficient since it requires a few
simple graph filtering operations in each iteration. Our initial exper-
iments show that its output is consistent with the sampling scheme
for bipartite graphs and results in superior performance over other
methods.

Index Terms— Graph signal processing, graph wavelet filter-
banks, critical sampling, graph filtering.

1. INTRODUCTION

Graph wavelet transforms have recently been used for a variety of
applications, ranging from multiresolution analysis [1, 2], compres-
sion [3, 4, 5], denoising [6], and classification [7]. These transforms
allow one to analyze and process signals defined over graphs while
taking into consideration the underlying relationships between sig-
nal values. The designs of these transforms are generally inspired
by traditional wavelet construction schemes and leverage principles
from the emerging field of Graph Signal Processing (see [8] for a
comprehensive overview).

One of the recent techniques for constructing wavelet transforms
on graphs is based on filterbanks. This approach is quite appealing
because it makes use of graph spectral filters [8] that have a low
complexity and enable a good trade-off between vertex-domain and
frequency-domain localization. Some of the desirable characteristics
for these transforms are critical sampling, compact support, orthog-
onality and perfect reconstruction. However, state-of-the-art wavelet
filterbanks that satisfy most of the mentioned properties require im-
posing certain structural constraints on the underlying graph. For
example, the recently proposed two-channel filterbanks in [9, 10]
are designed specifically for bipartite graphs. The special structure
leads to a natural downsampling-upsampling scheme (on one of the
two partitions) in each channel, accompanied by a spectral folding
phenomenon that is exploited while designing the filters. In order
to extend the design to arbitrary graphs, these works suggest using a
multidimensional framework where the input graph is decomposed
into multiple bipartite subgraphs over which filterbanks are designed
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and implemented independently. Various approaches have been pro-
posed to optimize the bipartite subgraph decomposition [11, 12] for
designing these multidimensional filterbanks. However, the limita-
tion of this framework is that one is forced to work with simplified
graphs that do not contain all the connectivity information. Addi-
tionally, there are also works that suggest expanding the input graph
to create a bipartite graph thereby leading to an oversampled filter-
bank [13], which may not be desirable for some applications such as
compression.

The focus of this work is centered on the analysis and design of
filterbanks on arbitrary graphs (without altering their topology) that
are critically-sampled, have compact support, and satisfy the perfect
reconstruction and orthogonality conditions as closely as possible.
To this end, we first present a formulation of a generic two-channel
filterbank on arbitrary graphs built using polynomial graph filters and
accompanied by a simple downsampling-upsampling scheme. We
state and analyze the conditions on the filter responses and the sam-
pling scheme that are required to satisfy the aforementioned prop-
erties. Unlike previous works, the lack of a special structure in
the graph in general makes the problem of jointly designing low-
degree filters and the sampling scheme impossible. Therefore, in this
work, we decouple the two by focusing only on designing a critical
sampling scheme while assuming that the analysis and synthesis fil-
ters are predefined for given frequency localization constraints. Our
main contributions are: (i) a criterion based on the reconstruction
error to evaluate any sampling scheme for given filters, and (ii) a
greedy but computationally efficient algorithm to optimize the error
criterion in order obtain an approximately optimal solution, along
with some theoretical guarantees. When the filters are fixed, the
problem of choosing the sampling scheme becomes akin to dictio-
nary or subset selection problems in [14, 15]. However, these works
target a specific class of signals and use an objective that is an aver-
age of the reconstruction errors for each. The metric considered in
our paper is fundamentally different since it is meant for any signal
over the graph and captures a bound on the reconstruction error. Fur-
ther, our greedy algorithm has low complexity making it suitable for
large-scale problems. The validity of our ideas is tested on various
simple examples. We show that the outcome of our algorithm for a
bipartite graph samples signals in each channel on either partition as
expected. Moreover, the sampling sets chosen for a general graph
result in superior performance in terms of reconstruction error.

2. WAVELET FILTERBANKS ON GRAPHS

2.1. Background and notation

In this paper, we work with simple, connected, undirected, and
weighted graphs G = (V, E) consisting of a set of nodes V =
{1, 2, . . . , n} and edges E = {wij}, i, j ∈ V , with wii = 0. We
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denote the adjacency, degree and Laplacian matrices by W, D
and L respectively. In order to be able to design graph spectral
filters, we shall work with the symmetric normalized form of the
Laplacian defined as L = I − D−1/2WD−1/2. L is a symmet-
ric positive semi-definite matrix and has a set of real eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 and a corresponding orthogonal set
of eigenvectors denoted as U = [u1,u2, . . . ,un]. A graph signal is
defined as a scalar valued discrete mapping f : V → R (such that
f(i) is the value of the signal on node i) and can also be represented
as a vector f in Rn, with indices corresponding to the nodes in the
graph. The downsampling operation on a graph signal f is defined
as the restriction of the signal f to a certain subset of nodes S ⊂ V
(known as the downsampling set), and the downsampled signal is
a vector of reduced length |S|. The downsampling operator for
S is obtained by sampling the corresponding rows of the identity
matrix I, i.e., S = IS,V ∈ {0, 1}|S|×n. Similarly, the upsampling
operation for signals downsampled on S inserts zeros in place of the
missing signal values at appropriate locations and is given by ST .

The main premise behind graph signal processing is that the
eigenvalues and eigenvectors of L provide a notion of frequency for
graph signals, similar to the Fourier transform in traditional signal
processing [8]. In this context, the graph Fourier transform (GFT)
of a signal f is given by f̃ = UT f . Further, one can design poly-
nomial graph filters H = h(L) =

∑k
i=0 hiL

i of different degrees,
whose response in the spectral domain is given by the polynomial
h(λ) =

∑k
i=0 hiλ

i. A k-degree polynomial filter can be imple-
mented in O(k|E|) complexity. Further, note that for undirected
graphs, L is symmetric, and hence H is symmetric.

2.2. Two-channel filterbanks

We now describe the general formulation for two-channel wavelet
filterbanks on general graphs. A more detailed description can be
found in [9, 10] along with the analysis for bipartite graphs. We
make certain changes to notation for compactness.

A generic two-channel wavelet filterbank on a graph decom-
poses any graph signal x ∈ Rn into a lowpass (smooth) and high-
pass (detail) component (Figure 1). It consists of an analysis filter-
bank with H0 and H1 as lowpass and highpass filters, and a synthe-
sis filterbank with G0 and G1 as the lowpass and highpass filters.
S0 ∈ {0, 1}|S0|×n and S1 ∈ {0, 1}|S1|×n are the downsampling
operators for the lowpass and highpass branch respectively, while
ST
0 and ST

1 are the corresponding upsampling operators. The out-
puts of the two branches after the analysis filterbank are y0 ∈ R|S0|
and y1 ∈ R|S1|. These are given as[

y0

y1

]
=

[
S0H0

S1H1

]
x = Tax. (1)

Similarly, the output of the synthesis filterbank (i.e., the recon-
structed signal) is denoted as x̂ ∈ Rn and is given by

x̂ =
[
G0S

T
0 G1S

T
1

] [y0

y1

]
= Ts

[
y0

y1

]
, (2)

with the complete transfer equation for the system given by

x̂ =
(
G0S

T
0 S0H0 + G1S

T
1 S1H1

)
x. (3)

We now state some desirable characteristics of the filterbank along
with the conditions needed to satisfy each.

Compact support requires that the filters {Hi,Gi}i=0,1 be ex-
pressible as finite polynomials of the graph Laplacian, a notion anal-
ogous to FIR filters in classical DSP. A k-degree polynomial filter

Fig. 1: A generic two-channel filterbank on graphs

requires collecting information from a k-degree neighborhood for
each node.

Critical sampling requires that the total number of samples after
downsampling in both branches should be equal to the dimension of
the signal, i.e., |S0|+ |S1| = n.

Perfect reconstruction requires that the transfer function of the
entire system be identity, i.e.,

G0S
T
0 S0H0 + G1S

T
1 S1H1 = I. (4)

Orthogonality requires the filterbanks to satisfy Ts = TT
a and

TT
aTa = I, which translates to substituting G0 = H0 and G1 =

H1 in (4).
Note that the perfect reconstruction condition in (4) can also be

interpreted using the eigendecomposition of L = UΛUT as

g0(Λ)UTST
0 S0Uh0(Λ) + g1(Λ)UTST

1 S1Uh1(Λ) = I, (5)

For an arbitrary U, it is impossible to satisfy (5) using low-degree
polynomial filters, since the number of constraints (= n2) is much
larger than the available degrees of freedom. Therefore, one would
like to design the system such that G0S

T
0 S0H0 +G1S

T
1 S1H1 is as

close as possible to identity. Special structure in the graph results in
a structured U and therefore simplification (5) by elimination of sev-
eral constraints. For example, in bipartite graphs with S0, S1 denot-
ing opposite partitions, it can be shown that UTST

0 S0U = 1
2
(I+I∗)

and UTST
1 S1U = 1

2
(I − I∗), where I∗ is the identity matrix mir-

rored about one of the vertical sides (i.e., with ones running from
top-right to bottom-left). This observation leads exactly to the per-
fect reconstruction conditions stated in [9, 10] for bipartite graphs.
I∗ causes the spectral folding phenomenon for bipartite graphs and
thus generates n additional aliasing constraints besides the n diag-
onal constraints, resulting in a total of 2n constraints that are easier
to satisfy with low-degree filters. Note that if we are not restricted
to using polynomial filters in the synthesis flterbank, least-squares
inversion can be used for inverting the analysis transfer function Ta,
provided it is non-singular.

3. CRITICAL SAMPLING FOR FILTERBANKS

3.1. Approximately optimal sampling scheme

For a critically sampled design, we must choose S0 and S1 such that
|S0|+|S1| = n and the filterbank is as close to perfect reconstruction
as possible. One way to achieve this is by minimizing the deviation
of the overall transfer function of the system from identity in terms
of Frobenius form, i.e., ‖G0S

T
0 S0H0 +G1S

T
1 S1H1− I‖2F , which

is in fact an upper bound on the squared relative error for all signals
on the graph. Further, in our design, we assume that we have already
designed filters H0,H1,G0,G1 to satisfy G0H0 + G1H1 = 2I
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Algorithm 1 Basic greedy minimization

Initialize: S = {∅}.
1: while |S| < n do
2: S ← S ∪ {u}, where u = argminv∈Sc φ(S ∪ {v}).
3: end while

(for example, using the methods of [9, 10]). In order to minimize the
reconstruction error over the choice of sampling sets S0 and S1, we
first introduce a concatenated setting (of 2n dimensions) by defining

H =

[
H0

H1

]
∈ R2n×n, G =

[
G0

G1

]
∈ R2n×n,

y =

[
y0

y1

]
∈ R|S0|+|S1|, S =

[
S0 0
0 S1

]
∈ {0, 1}(|S0|+|S1|)×2n.

Note that the concatenated downsampling operator S can be ob-
tained by sampling rows of the 2n-dimensional identity correspond-
ing to indices in a concatenated sampling set S ⊂ {1, . . . , 2n}
that contains sampled nodes for both the channels such that |S| =
|S0| + |S1|. Further, Sc = {1, . . . , 2n} \ S and S0 and S1 can
be recovered from S as S0 = {v|v ∈ S, 1 ≤ v ≤ n} and S1 =
{v − n|v ∈ S, n+ 1 ≤ v ≤ 2n}. With these definitions, the trans-
fer function of the system can be written as GTSTSH and finding
a critical sampling scheme requires solving

min
S:|S|=n

∥∥∥GTSTSH− I
∥∥∥2
F
. (6)

Since we choose the filters such that GTH = 2I, we can rewrite the
objective as

φ(S) =

∥∥∥∥GTSTSH− 1

2
GTH

∥∥∥∥2
F

=

∥∥∥∥∥1

2

∑
i∈S

gih
T
i −

1

2

∑
j∈Sc

gjh
T
j

∥∥∥∥∥
2

F

, (7)

where gi and hi denote the ith columns of GT and HT respectively.
In order to minimize φ(S), we propose to use a simple greedy pro-
cedure (Algorithm 1) that begins with an empty S and keeps adding
nodes one-by-one that minimize φ(S) at each step. This algorithm
requiresO(n2) evaluations of the objective φ(S) which can be quite
expensive. Explicitly storing the matrices G and H requires O(n2)
space. We now show how one can efficiently implement the algo-
rithm in O(n) graph filtering operations and O(n) space. Using (7),
the change in the objective φ(S) when a node v ⊂ {1, . . . , 2n} is
added to S is given by:

φ(S ∪ {v}) =

∥∥∥∥∥
(

1

2

∑
i∈S

gih
T
i −

1

2

∑
j∈Sc

gjh
T
j

)
+ gvh

T
v

∥∥∥∥∥
2

F

= φ(S) + pv(S) + qv, (8)

where we defined

pv(S) = Tr

[
hvg

T
v

(∑
i∈S

gih
T
i −

∑
j∈Sc

gjh
T
j

)]
, (9)

qv = ‖gv‖2‖hv‖2. (10)

Thus, we have

argmin
v∈Sc

φ(S ∪ {v}) = argmin
v∈Sc

(pv(S) + qv) . (11)

Algorithm 2 Efficient algorithm for critical sampling

Input: Graph G = {V, E}, concatenated filters H, G.
Initialize: S = {∅}, p,q ∈ R2n such that pv = −2 〈gv,hv〉,

qv = ‖gv‖2‖hv‖2.
1: while |S| < n do
2: S ← S ∪ {u}, where u = argminv∈Sc (pv + qv).
3: p← p + 2(Ggu) ◦ (Hhu).
4: end while

In order to compute pv(S) for each S, we first note that

pv(∅) = Tr
[
hvg

T
v (−GTH)

]
= −2 〈gv,hv〉 . (12)

Further, for a node u, pv(S ∪ {u}) can be computed as

pv(S ∪ {u}) = Tr

[
hvg

T
v

(∑
i∈S

gih
T
i −

∑
j∈Sc

gjh
T
j + 2guh

T
u

)]
= pv(S) + 2 〈gv,gu〉 〈hv,hu〉 . (13)

To make the notation compact, we introduce the vectors p(S),q ∈
R2n, whose vth elements are pv(S) and qv . Therefore, using “◦” to
denote element-wise vector product (Hadamard product), we have

p(S ∪ {u}) = p(S) + 2(Ggu) ◦ (Hhu). (14)

We summarize the efficient method for choosing S in Algorithm 2.
Note that the vectors hv and gv can be computed using two filtering
operations each as HT δv and GT δv respectively, where δv is the
graph delta signal on node v. Therefore, in terms of time complexity,
computing p(∅) and q require 4n one-time graph filtering operations
in total. Further, each greedy iteration requires performing 8 filtering
operations. Therefore, Algorithm 2 requires O(n) graph filtering
operations. The space complexity of the algorithm is O(n) since it
is matrix-free, i.e., L is the only matrix that needs to be stored.

3.2. Theoretical guarantees

We now show that it is possible to obtain some theoretical insight
into the performance of (a randomized variant of) our greedy algo-
rithm when G = H. Note that for S1 ⊆ S2 and a v /∈ S1,S2,

pv(S1) =
∑
i∈S1

〈hv,hi〉2 −
∑
j∈Sc

1

〈hv,hj〉2

≤
∑
i∈S2

〈hv,hi〉2 −
∑
j∈Sc

2

〈hv,hj〉2 = pv(S2) (15)

Using this in (8), we obtain

φ(S1 ∪ {v})− φ(S1) ≤ φ(S2 ∪ {v})− φ(S2), (16)

which implies φ(S) is supermodular in S. Therefore, the function
ψ(S) = φ(∅)−φ(S) is submodular, non-monotone and normalized
(ψ(∅) = 0). As a result, the set S∗ obtained by the greedy max-
imization of ψ(S) (or equivalently greedy minimization of φ(S))
with a randomized version of Algorithm 1, that selects one node uni-
formly at random from the best n nodes at each iteration, is at least a
0.3-approximation of the optimal set SOPT [16]. To be precise, we
have the following guarantees for S∗ obtained from the randomized
greedy algorithm

ψ(SOPT) ≥ ψ(S∗) ≥ 0.3ψ(SOPT) (17)
⇒ φ(SOPT) ≤ φ(S∗) ≤ 0.3φ(SOPT) + 0.7n (18)
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Although, guarantees for the deterministic version of the greedy al-
gorithm are part of ongoing research, we observe empirically that its
performance is competitive. Note that for the biorthogonal design
when G 6= H, φ(S) is no longer supermodular, hence we cannot
state guarantees on the performance of the greedy algorithm in this
case. However, experiments show that the algorithm performs well
in this case as well.

3.3. Multi-channel extension

In order to extend our formulation to m-channel filterbanks with
analysis/synthesis filter pairs {Hk,Gk}k=0,...,m−1 and sampling
sets {Sk}k=0,...,m−1 (Sk ⊂ {1, . . . , n}), one can create the con-
catenated filters H,G ∈ R(

∑m−1
k=0

|Si|)×n and the concatenated
sampling set S ⊂ {1, . . . ,mn} in a manner similar to that of the
two-channel case. Note that each Sk can be then be recovered from
S as Sk = {v− kn|v ∈ S, kn+ 1 ≤ v ≤ kn+n}. Further, in this
case, we require predesigned filters such that GTH = mI, resulting
in the objective

φ(S) =

∥∥∥∥∥
(

1− 1

m

)∑
i∈S

gih
T
i −

1

m

∑
j∈Sc

gjh
T
j

∥∥∥∥∥
2

F

, (19)

that can be optimized under the constraint |S| = n using the same
technique as that of the two-channel case. Moreover, it admits the
same theoretical guarantees.

4. EXPERIMENTS

In this section, we present simple experiments to demonstrate the
effectiveness of our critical sampling scheme for two-channel filter-
banks. In our first experiment, we test its performance on two simple
bipartite graphs (Figure 2) with filters H0,H1 obtained using the
graph-QMF design of [9], that approximates the Meyer kernel with
a polynomial filter of chosen length 8. We observe that the output
of Algorithm 2 matches exactly with that of the optimal sampling
scheme for the bipartite graph, which is to downsample the filtered
signal in each channel on either partition.

For our second experiment, we design a critically-sampled
two-channel filterbank on the Minnesota road network graph us-
ing two configurations of analysis/synthesis filters: (i) Graph-QMF
design [9] with 8-degree polynomial approximations of the Meyer
kernel, and (ii) graphBior(6,6) [10]. The sampling scheme obtained
for each of these configurations is plotted in Figures 3a and 3b. We
observe that the sampling pattern for each channel colors nodes in
a predominantly alternating fashion indicating a propensity towards
bipartition. The response of the filterbank after determining the
sampling set is plotted in Figures 3c and 3d for unit magnitude delta
functions in the spectral domain. We observe that it is close to 1
for all frequencies. Since the transfer function is not diagonalizable
in the GFT basis U, there is an associated aliasing effect with the
filterbank. We characterize this by plotting the maximum aliasing
coefficient in terms of magnitude for each frequency component in
Figures 3e and 3f. Finally, we also compare the recontruction perfor-
mance (in terms ratio of energies of error signal and original) of our
proposed method against a random sampling scheme, and a spectral
approximation of MaxCut for 1000 random signals. The average
squared relative errors along with the standard deviations are listed
in Table 1, we observe that our method has superior performance.

(a) (b)

Fig. 2: Sampling scheme obtained using Algorithm 2 for bipartite
graphs with graph-QMF design filters. Red and blue indicate nodes
in low-pass and high-pass channels.
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Fig. 3: Performance of critical sampling scheme (Algorithm 2) on
Minnesota road network graph. (a), (c) and (e) denote sampling
scheme obtained, spectral response, and maximum aliasing compo-
nent for graph-QMF design. (b), (d) and (f) illustrate corresponding
results for graphBior(6,6).

Table 1: Recontruction error results for random signals on the Min-
nesota road network graph.

graph-QMF (poly 8) graphBior(6,6)
Random 0.4842± 0.0113 0.4629± 0.0108
MaxCut 0.1125± 0.0069 0.0972± 0.0061
Proposed 0.0779± 0.0049 0.0664± 0.0045

5. CONCLUSIONS AND FUTURE WORK

We presented a technique for designing critically-sampled near-
perfect reconstruction wavelet filterbanks on arbitrary graphs. In
the absence of a special structure in the graph, it is not possible
in general to attain perfect reconstruction with low-degree polyno-
mial graph filters with any critical sampling scheme. Therefore,
we decouple the two design problems in this work and focus only
on choosing the best possible sampling scheme. Specifically, given
a predesigned set of analysis/synthesis filters, our algorithm effi-
ciently approximates the best sampling set for each channel in order
to minimize a bound on the overall reconstruction error associated
with the filterbank. As a future extension, we would like to jointly
optimize the filter responses and the critical sampling scheme in
order to further reduce the reconstruction error.
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