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ABSTRACT
In this paper, we consider ridge detection for multicomponent
signal analysis. We introduce a new ridge detector based on
a projection of the reassignment vector in a specific direction
which is related to the geometry of the spectrogram magni-
tude. The ridge definition we introduce enables that of the
basin of attraction associated with a ridge and then mode re-
construction. Simulations show better concentration of the
information on the ridges obtained by our method compared
to other existing ridge detectors that also make use of the re-
assignment vector.

Index Terms— multicomponent signals; short-time
Fourier transform; reassignment; time-frequency; AM/FM;
ridges

1. INTRODUCTION

The analysis of multicomponent signals has been at the heart
of signal processing research for over 60 years. A chal-
lenge that has faced the signal processing community, and
for which many approaches have been developed, is that
of dealing with signals with multiple AM-FM components
[1, 2]. Time-frequency (TF) analysis is central in the analysis
of such signals, and many techniques have been developed
within that framework: e.g. [3], the synchrosqueezing trans-
form (SST) [4, 5], which enhances the TF representation as-
sociated either with the continuous wavelet transform (CWT)
or the short-time Fourier transform (STFT), while enabling
mode reconstruction. One key issue associated with the SST
method is related to ridge estimation, since an estimate of the
ridge associated with each mode prior to mode reconstruction
is required. Many approaches have been proposed that take
this approach, e.g. [6, 7] and, once the ridges are known,
alternative techniques to SST have been developed for mode
reconstruction by integrating the STFT coefficients in the
vicinity of the detected ridges [8, 9].

In this paper, we are interested in ridge detection using the
properties of the reassignment vector (RV), and then mode re-
construction based on the basins of attraction associated with
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the detected ridges. This approach to mode reconstruction
was first proposed in [10] and then improved in [11, 12], but
some difficulties remain when trying to assess a ridge associ-
ated wih a Dirac distribution, which can arise when the signal
under consideration is discontinuous in time.

The goal of the paper is to propose a new ridge detector,
based on the property of the reassignment vector, but which
allows for AM-FM mode reconstruction in a fully adaptive
way, whatever the types of the modes, including impulses or
discontinuities. The paper is structured as follows, first we
introduce basic definitions, followed by a short review of the
ideas underlying the reassignment vector (RV). Then, we re-
call the principle of ridge detection based on RV and develop
our new technique, then we assess the improvement brought
by our new ridge detector on different type of signals finally
drawing some conclusions.

2. DEFINITIONS

In this section, we provide some basic definitions which will
be useful in the sequel. For a given signal f ∈ L1(R), its
(modified) STFT is defined by

V gf (t, ω) =

∫
R
f(u)g(u− t)e−i2πω(u−t) du, (1)

where the window g is assumed to be real-valued. The spec-
trogram is then defined as |V gf (t, ω)|2. In the following, we
will study more in details multicomponent signals f defined
by:

f(t) =

K∑
k=1

fk(t), with fk(t) = ak(t)e
i2πφk(t). (2)

3. REASSIGNMENT OF THE SPECTROGRAM

The principle of the reassignment method (RM) [13] is to
compensate for the TF shifts induced by the 2D smoothing
involved in defining the spectrogram. To do so, a meaning-
ful TF location is first determined to which to assign the lo-
cal energy given by the spectrogram. This corresponds to
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the centroid of the distribution, whose coordinates are de-
fined by τ̂f (t, ω) := −∂ω arg V gf (t, ω), and ω̂f (t, ω) := ω+
1
2π∂t arg V gf (t, ω) [13]. Both quantities locally define an in-
stantaneous frequency (IF) and a group delay (GD) and enable
perfect localization of linear chirps [13]. An efficient proce-
dure to compute them is:

τ̂f (t, ω) = t+ <

{
V tgf (t, ω)

V gf (t, ω)

}
,

ω̂f (t, ω) = ω − 1

2π
=

{
V g

′

f (t, ω)

V gf (t, ω)

}
, (3)

where tg stands for the function tg(t) and <{Z} (resp.
={Z}) is the real (resp. imaginary) part of the complex
number Z. In that context, the reassignment vector (RV) is
defined by:

RV (t, ω) =

(
τ̂f (t, ω)− t
ω̂f (t, ω)− ω

)
. (4)

When g(t) = e−πt
2

, g′(t) = −2πtg(t) and the reassignment

vector reads RV (t, ω) =

(
<
{
V tgf (t,ω)

V gf (t,ω)

}
,=
{
V tgf (t,ω)

V gf (t,ω)

})
.

With such a window,∇ log |V gf (t, ω)| can be written in terms
of RV using the following identities:

∂tV
g
f (t, ω) = −V g

′

f (t, ω) + 2iπωV gf (t, ω) (5)

∂ωV
g
f (t, ω) = −2iπV tgf . (6)

Thus, we immediately obtain:

∇ log |V gf (t, ω)| =

(
∂t|V gf (t, ω)|
|V gf (t, ω)|

,
∂ω|V gf (t, ω)|
|V gf (t, ω)|

)

=

(
−<

{
V g

′

f (t, ω)

V gf (t, ω)

}
, 2π=

{
V tgf (t, ω)

V gf (t, ω)

})
= 2πRV (t, ω)

In what follows, we use the notation (Lt(t, ω), Lω(t, ω)) :=

RV (t, ω). When the window g(t) = e−aπt
2

is used instead,
we may write: ∇ log |V gf (t, ω)| = 2π

(
aLt(t, ω),

1
aLω(t, ω)

)
,

meaning ∇ log |V gf (t, ω)| can still be accessed via the appro-
priate renormalizations of the reassignment vector field.

4. DEFINITIONS OF CONTOUR POINTS

In this section, we investigate two different definitions of con-
tour points. Detecting ridge points and linking them to build
smooth contours is a challenging problem that has previously
been considered in both STFT and wavelet settings [6, 11].
As we will see later, the proposed approach consists of pro-
jecting the RV, possibly renormalized, in a specific direction.
Our aim is indeed to detect zero-crosssings of a signed func-
tion, which we can do in practice with the contourc Matlab
function, the difficulty being to find a appropriate direction of
projection.

4.1. Ridge definition based on reassignment vector pro-
jection

In the technique introduced in [10, 14] to define contours in
the TF plane, points on a contour correspond to locations
where the RV changes orientation rapidly, which happens
when the contours, corresponding to the IF of a mode, is
crossed. However, determining where those crossings are in
a discrete setting is problematic, therefore it is preferable to
project the RV in a specific direction, given by an angle θ,
and then determine the location of the change of sign of the
projection. These points, called contour points (CPs), are
defined as the zeros of the following quantity

〈∇ log |V gf (t, ω)|, vπ2 +θ〉, (7)

where vλ is the unit vector in the direction λ. This approach
requires the direction θ to be known a priori and is therefore
not well suited to determining CPs with varying orientations.
Instead of imposing an orientation θ an alternative is to com-
pute CPs as in [15]:

α(t, ω) := 〈∇ log |V gf (t, ω)|, vθ(t,ω) mod π〉 = 0 (8)

with θ(t, ω) the argument of ∇ log |V gf (t, ω)| and (θ(t, ω)
mod π) ∈ [0, π[. This approach was further studied in [11]
and compared to a technique based on a study of the zeros of
the spectrogram proposed in [16]. The rationale behind this
formula is that α(t, ω) corresponds to the signed magnitude
of the (renormalized) RV. More precisely, it can be checked
that α(t, ω) is negative above a ridge (with finite slope) and
positive below. This way, a new type of CPs is defined that is
no longer dependent on a fixed angle θ.

However, this technique, calledM1 in the sequel, has sev-
eral drawbacks, which are related. First, a zero of the spectro-
gram is a repulsive point for the vector field ∇ log |V gf (t, ω)|
[11], and the mod π computation induces α(t, ω) to be zero
on horizontal TF lines crossing that zero. This creates special
structures in the vicinity of zeros as shown on Figure 1 A.
The second limitation is that the technique fails to detect ver-
tical ridges, because of the mod π factor. To illustrate this, we
consider the STFT of a noisy Dirac and see how the contour
detector works. The results depicted in Figure 1 B show that,
the mod π creates artificial sign changes in α(t, ω) preventing
the detection of the actual contour.

4.2. Determination of ridge points based on differential
geometry

Alternatively, the estimation of ridges and valleys of an im-
age is an old and well-known problem in computer vision, for
which a nice answer has been proposed [17] using the Hes-
sian of the smoothed image, within the scale-space theory.
Indeed, the quantity log(|V gf (t, ω)|) can be viewed as an im-
age, whose gradient is equal to:

G(t, ω) = 2π(aLt(t, ω),
1

a
Lω(t, ω)), (9)
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A B

Fig. 1. A: an illustration of the behaviour of a contour, com-
puted with methodM1, in the vicinity of a zero of the spectro-
gram;B: STFT of a noisy Dirac distribution (SNR = 0 dB) on
which the first 10 contours, according to their energy content
and computed with method M1, are superimposed.

and its Hessian to:

H(t, ω) =

(
a∂tLt(t, ω) a∂ωLt(t, ω)
1
a∂tLω(t, ω)

1
a∂ωLω(t, ω)

)
=

(
Htt Htω

Hωt Hωω

)
, (10)

where, omiting the variable (t, ω):

∂tLt = <
{
−1 +

V tgV
g′
f

−V tg
′

f
V
g
f

(V
g
f
)2

}
, ∂tLω = 2π=

{
V
t2g
f

V
g
f
−(V

tg
f

)2

(V
g
f
)2

}

∂ωLt =
1
2π
=
{
V
g′′
f

V
g
f
−(V

g′
f

)2

(V
g
f
)2

}
, ∂ωLω = <

{
V
tg′
f

V
g
f
−V tg

f
V
g′
f

(V
g
f
)2

}
.

Taking into account the relation between g and its derivative,
the computation of the Hessian matrix can be carried out
using only one more STFT as those already used to compute
Lt and Lω . Since H is diagonal in an orthonormal real basis
of eigenvectors, we denote by λp and λq , the eigenvalues of
H and p and q the corresponding unitary eigenvectors, i.e.
p = (cos(β), sin(β)) with

cos(β) =

√√√√1

2

(
1 +

Htt −Hωω√
(Htt −Hωω)2 + 4HtωHωt

)

sin(β) = sign(Htω)

√√√√1

2

(
1−

Htt −Hωω√
(Htt − Lωω)2 + 4HtωHωt

)
, (11)

and q = (sin(β),− cos(β))T . In that framework, λp =
pTHp and λq = qTHq. Then, we define Lp(t, ω) =
〈G(t, ω), p〉 (Lq being defined the same way from q), and
compute the ridge and valley points (corresponding to two
different types of CPs) as follows:

Ridges:Lp(t, ω) = 0 and λp(t, ω) < 0, |λp(t, ω)| ≥ |λq(t, ω)|
Valleys:Lp(t, ω) = 0 and λp(t, ω) > 0, |λp(t, ω)| ≤ |λq(t, ω)|.

This new formulation appears to get rid of the problem aris-
ing from the use of the mod π factor. However, there is still
one thing that can give rise to instability: when Htω is too
small, which is typically the case when a purely harmonic
mode or a Dirac is considered, sign(Htω) may change spuri-
ously. Note that this change does not affect these two types of

signals in the same manner: ifHtω changes signs in the vicin-
ity of an horizontal ridge (constant frequency), we get β = 0
(since sin(β) = 0), and Lp corresponds to the projection in
the direction π

2 , while in case of a vertical ridge (i.e. a Dirac
impulse) β = ±π2 (since sin(β) = ±1), and Lp corresponds
to a projection either in the direction 0 or π.

So when considering this model the problem of instability
with a Dirac pulses remains, but we note that the ridge detec-
tion is stable if β is far from π

2 (i.e cos(β) not too small). We
therefore change the direction of projection when cos(β) be-
comes too low by using the following new estimate for the
eigenvectors:

Algorithm 1
p defined with (11), if cos(β) < γ else by


cos(β) =

√
1
2

(
1− Htt−Hωω√

(Htt−Lωω)2+4HtωHωt

)
,

sin(β) = sign(Htω)

√
1
2

(
1 + Htt−Hωω√

(Htt−Hωω)2+4HtωHωt

)
β = atan(sin(β)/ cos(β))

This method is denoted M2 in the sequel. Looking at the
above description, we see that p is replaced by a vector or-
thogonal to it only if β = π

2 (the absolute value between the
original vector and the new one equals 2| cos(β)|| sin(β)|).
Figure 2 A displays the STFT of the same noisy Dirac as the
one in Figure 1 B, again with the first 10 contours, with re-
spect to their energy content and computed with method M2,
superimposed. This illustrates the benefits of using method
M2 rather than M1 for that particular type of signals.

4.3. Determination of basins of attraction using RV and
mode reconstruction

Having determined the ridges associated with the modes mak-
ing up the signal, we define the basin of attraction (BA) asso-
ciated with a ridge, i.e. the set of coefficients associated with
a given contour, as in [11]. Since the RV points to a ridge in
its vicinity, we determine the BA of a given ridge as the set
of points such that the RV points to that ridge. However, be-
cause the localization property of RV is only valid for linear
chirps, and also because of the presence of noise, RV does
not point exactly to a ridge. Therefore, it is proposed in [11]
to associate with a given coefficient (t, ω) the closest ridge of
point (τ̂f (t, ω), ω̂f (t, ω)). The BA corresponding to the most
energetic contour of the STFT of a noisy Dirac is given in
Figure 2 B. Once the BAs are computed, the corresponding
modes can be retrieved as follows. Let Bi ⊂ R2 be the BA
associated with ridge i, then a local reconstruction technique
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Fig. 2. A: Contours (the 10 most energetic ones) associated with a noisy Dirac using method M2(SNR = 0 dB); B: Basin of
attraction (in yellow) associated with the most energetic contour comuted on a noisy Dirac; C: Reconstructed signal based on
the coefficients contained in the basin of attraction depicted in B along with the original Dirac distribution; D: Energy contained
on the first contour for noisy Diracs (SNR in abscissa) and for the different methods (M1 and M2 with different values for γ);
E: noisy STFT of linear and a polynomial chirp with the first two contours superimposed (SNR = 0 dB, γ = 0.1); F: Energy
contained on the first two contours computed on E, for methods M1 and M2, for different SNRs

of mode fi corresponding to ridge i can be achieved by:

fi(t) =
1

g(0)

∫
(t,ω)∈Bi

V gf (t, ω)dω. (12)

An illustration of the reconstruction procedure is given in Fig-
ure 2 C, where only the BA computed in Figure 2 B is used for
mode reconstruction (in blue), along with the original signal
(in red).

5. NUMERICAL RESULTS

In this section, we purposefully focus only on assessing the
quality of the new ridge detector, which is the main novelty
of the paper, depending on parameter γ (defined in Algorithm
1), the only one to be fixed in method M2. We investigate the
quality of the ridge estimation for different types of mode and
when the noise level varies. To measure this, we consider the
energy contained in the firstK (the number of modes) contour
as γ varies:

P (γ) =

K∑
i=1

∑
(t,ω)∈Cγi

|V gf (t, ω)|
2, (13)

where Cγi is the ith contour, according to its energy content,
computed with method M2 with parameter γ. We remark,
that when M2 is applied to a noisy Dirac (see Figure 2 D) the

energy is better concentrated on the first contour, when the
noise increases, when γ is chosen larger: the noise results in
some instabilities in the direction of p, which varies around
π/2, and, to choose a large enough γ enables to compensate
for that. As far as the signal whose STFT is depicted in Figure
2 E, as expected, the sensitivity to γ is very low (see Figure 2
F), since the angle p with the horizontal axis is lower than π

3
(corresponding to γ = 0.5), and so, in Algorithm 1, one stays
in the first case. Finally, it is worth noting that the proposed
method M2 always behaves better than M1.

6. CONCLUSION

In this paper, we have presented a new algorithm to esti-
mate structures called contours, associated with the STFT
of multicomponent signals. This algorithm is based on the
study of the geometry of STFT magnitude. We then defined
basins of attraction associated with the contours ; these can be
used to reconstruct the modes making up the signal. Numer-
ical experiments show a better concentration of the STFT on
the contours determined using this new technique rather than
other methods based on the projection of reassignment vector.
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